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R egional Federal Reserve banks expend considerable effort preparing
for FOMC meetings, culminating in a statement presented to the com-
mittee. Statements typically begin with an assessment of regional

economic conditions, followed by an update on national economic conditions
and other developments pertinent to monetary policy.

This article examines whether the regional economic information pro-
duced by the Federal Reserve Bank of Richmond (FRBR), in the form of
diffusion indexes, can be tied to the business cycle. Such a link is of direct in-
terest because of its applicability to policy decisions. Very short cycles (such
as a month in length) are potentially just noise and of little policy interest.
Very long cycles (such as a long-term trend) are typically thought to be driven
by technological considerations over which policy has little bearing. In con-
trast, one generally thinks of monetary policy decisions as affecting primarily
medium-length cycles or business cycles. The objective of the research herein,
therefore, is to identify which of the FRBR’s indexes tend to reflect primarily
business cycle considerations. Indeed, indexes for which such considerations
are small or nonexistent have little hope of providing any information about
the state of aggregate production measures over the business cycle, and their
calculation would be of limited value.

At the regional level, economic data are less comprehensive and less timely
than at the national level. For example, no timely data are published on state-
level manufacturing output or orders. In addition, published data on Gross
State Product (GSP) are available with lags of 18 months or more. Also, these
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published data are available to FOMC members as soon as they are available
to the Reserve Banks so that their analysis by the latter adds little to the
broader monetary policy process. These shortcomings have led a number of
organizations—including several regional Federal Reserve banks—to produce
their own regional economic data. These efforts mostly have taken the form of
high-frequency surveys. Surveys provide speed and versatility, overcoming
the obstacles inherent in the traditional data. But surveys are often relatively
expensive per respondent, leading organizations to maintain relatively small
sample sizes. Further, to limit the burden on respondents, survey instruments
often ask very simple questions, limiting the information set and level of
analysis.

The Richmond Fed conducts monthly surveys of both manufacturing and
services sector activity. The number of survey respondents is usually around
100 and respondents report mostly whether a set of measures increased, de-
creased, or was unchanged. However, there are several measures—primarily
changes in prices—reported as an annual percentage change. Results from
these surveys, along with Beige Book information, comprise the foundation
of regional economic input into monetary policy discussions.

That said, there are several reasons why one may be skeptical of diffusion
indexes’ ability to capture useful variations in the business cycle. Specifically,
the usefulness of diffusion indexes hinges critically on the following aspects
of survey data:

• Diffusion indexes are produced from data collected at relatively high
frequency—with new indexes being typically released every month—
and therefore potentially quite noisy.

• The types of questions being asked allow for very little leeway in re-
spondents’ answers. For example, the regional diffusion indexes pro-
duced by the FRBR are calculated from survey answers that only dis-
tinguish between three states from one month to the next. Thus, we
ask only whether shipments, say, are up, down, or unchanged relative
to last month. In particular, let I , D, and N denote the number of re-
spondents reporting increases, decreases, and no change respectively,
in the series of interest. The diffusion index is then simply calculated
as

I =
(

I −D

I +N +D

)
× 100. (1)

Observe that I is bounded between −100 and 100, and takes on a
value of zero when an equal number of respondents report increases
and decreases.

• The surveys must contain a large enough sample in order that a diffu-
sion index capture potentially meaningful variations at business cycle
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frequencies. As a stark example, note that if only two firms were
surveyed, the index I above would only ever take on five values,
{−100,−50, 0, 50,
100}. If three firms were sampled, I in (1) would only ever take on
the values {−100,−66,−33, 0, 33, 66, 100}. Evidently, I will take on
more and more values the more firms are sampled. This may not be a
problem for identifying whether the resulting index is driven mainly by
business cycle considerations per se, but will affect the degree to which
such indexes commove with more continuous aggregate measures of
production over the cycle.

• Composition effects will also affect this last observation. To see this,
suppose that periods of recessions and expansions are characterized
by all firms decreasing and increasing their shipments respectively as
changes in demand occur. Then, even with a large sample, the diffusion
index in (1) could never take on any other value than −100 and 100 and
would, therefore, offer no information on the relative strength of eco-
nomic conditions. This will not be the case, however, when the number
of firms reporting decreases or increases in shipments, say, varies in a
systematic fashion with the extent of recessions and expansions.

• Finally, respondents possess much discretion in the way they answer
survey questions. Thus if a given manufacturer’s new orders, say, in-
creased or decreased this month by only a “small” amount relative to
last month, she may decide to report no change in her orders. But the
key point here is that the definition of “small” is left entirely to the
respondent’s discretion.

1. SOME KEY CONCEPTS IN FREQUENCY DOMAIN
ANALYSIS

Before tackling the issue of whether regional diffusion indexes have anything
to do with business cycles, let us briefly review some important concepts
that we shall use in our analysis. In particular, the material in this section
summarizes central notions of frequency domain analysis that can be found in
Hamilton (1994), Chapter 6; Harvey (1993), Chapter 3; as well as King and
Watson (1996).

The spectral representation theorem states that any covariance-stationary
process {Yt}∞t=−∞ can be expressed as a weighted sum of periodic functions
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of the form cos(λt) and sin(λt):1

Yt = μ+
∫ π

0
α(λ) cos(λt)dλ+

∫ π

0
δ(λ) sin(λt)dλ, (2)

where λ denotes a particular frequency and the weights α(λ) and δ(λ) are
random variables with zero means.

Generally speaking, given that any covariance-stationary process can be
interpreted as the weighted sum of periodic functions of different frequencies,
a series’ power spectrum gives the variance contributed by each of these fre-
quencies. Thus, summing those variances over all relevant frequencies yields
the total variance of the original process. Moreover, should certain frequen-
cies, say [λ1, λ2], mainly drive a given series, then the variance of cycles
associated with these frequencies will account for the majority of the total
variance of that series.

A Simple Example

In order to make matters more concrete, consider the following example.
Define the following process for a hypothetical economic time series, Yt ,

Yt = α1 sin(λ1t)+ α2 sin(λ2t)+ α3 sin(λ3t), (3)

where the αi’s and λi’s are strictly positive real numbers. A sine function is
bounded between −1 and 1, so that the first term on the right-hand side of
equation (3) will oscillate between −α1 and α1, the second term between −α2

and α2, etc. We refer to αi as the amplitude of the component of Yt associated
with αi sin(λit). A function is periodic with period T when the function
repeats itself every T periods. The period of a sine function is defined as 2π
divided by its frequency. Thus, the first term on the right-hand side of (3)
will repeat itself every 2π/λ1 periods, the second term every 2π/λ2 periods,
etc. Furthermore, observe that the higher the frequency, the faster a periodic
function repeats itself.

For additional concreteness, assume now that one unit of time is a month,
and that in the above example, {α1, λ1} = {0.25, π6 }, {α2, λ2} = {1, π30 }, and
{α3, λ3} = {0.25, π60 }. Then, the components of Yt given by α1 sin(λ1t) and
α3 sin(λ3t) have the shortest and longest periods, one year (i.e., a seasonal
cycle) and 10 years, respectively, as well as the smallest amplitude, 0.25. We
refer to these components as the high- and low-frequency components of Yt ,
respectively. In contrast, the component of Yt given by α3 sin(λ3t) repeats
itself every 2π/(π/30) = 60 months, or five years. Thus, we refer to this
component as the medium-frequency or business cycle component of Yt . Note

1 A stochastic process, Yt , is covariance stationary if E(Yt ) = μ and E(YtTt−s ) = σ s∀t
and s.
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Figure 1 Examples of Aggregation of Periodic Functions
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also that α2 sin(λ2t) has the largest amplitude of all three components since
α2 = 1. The upper left-hand panel of Figure 1 illustrates these periodic func-
tions separately over a period of 10 years. We can clearly see that the slowest
moving periodic function (i.e., the low-frequency component) repeats itself
exactly once over that time span. In contrast, the business cycle component
repeats itself twice and dominates in terms of its amplitude.

The upper right-hand panel of Figure 1 illustrates the sum of these periodic
components. It is clear that Yt repeats itself twice over the 10-year time
span. Put another way, Yt in this case is primarily driven by its business
cycle or medium-frequency component. This is because this component has
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the largest amplitude and matters most, while the high- and low-frequency
components have relatively small amplitude. In particular, the amplitude of
Yt is α1 + α2 + α3 = 1.5, with two-thirds of that amplitude being contributed
by the medium-frequency component. Since, strictly speaking, the power
spectrum relates to variances, the fraction of total variance of Yt explained by
the component α2 sin(λ2t) in this case is 1/(0.252 +0.252 +1), or 89 percent.2

As an alternative example, suppose that α2 = 0.25 while α3 = 1, with
all other parameters unchanged. This case is depicted in the lower left-hand
panel of Figure 1, where it is the component that repeats itself just once over
10 years that now evidently dominates in terms of amplitude. The sum of low-,
medium-, and high-frequency components, Yt , is given in the lower right-hand
side panel of Figure 1, and notice that it reflects mainly its slowest moving
element, α3 sin(λ3t). And indeed, contrary to our earlier example, it is now
this low-frequency component that accounts for the bulk of the total variance
of Yt , or two-thirds of its amplitude.

Formally, one defines the population spectrum of Y as

f (λ) = 1

2π

∞∑
j=−∞

γ je
−iλj , −π ≤ λ ≤ π (4)

= 1

2π

⎡⎣γ 0 + 2
∞∑
j=1

γ j cos(λj)

⎤⎦ ,
where i2 = −1 and γ j is the j th auto-covariance of Y , cov(Yt , Yt±j ). In a
manner similar to our example above, economic time series that are driven
principally by business cycle forces will have most of their variance (or ampli-
tude) associated with cycles lasting between one and a half to eight years. We
can think of f (λ) in equation (4) as the variance of the periodic component
with frequency λ. Similarly, in the above example, the components αi sin(λit)
have different amplitude or variance. More specific attributes of the power
spectrum are given in Appendix A. Details of estimation and calculations for
the results that follow are given in Appendix B.

2. EXAMPLES WITH MANUFACTURING DATA

Figure 2 plots the behavior of manufacturing shipments as actually recorded by
the Census at the national level, and as captured by different indexes including
the Institute of Supply Management (ISM) index, the Federal Reserve Bank of
Philadelphia (FRBP) Business Outlook survey, and the FRBR regional survey.

2 In particular, amplitude and variance are closely related here since var(αi sin(λi t)) =
α2
i
var(sin(λi t) and var(sin(λi t)) = var(sin(λj t)) for i �= j . Therefore, the fraction of total variance

explained by the component αi sin(λi t) is α2
i
/
∑
i α

2
i
.
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Figure 2 Measures of Manufacturing Shipments
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Because the FRBR only began to produce its diffusion indexes in November
1993, we chose to homogenize our samples in Figure 2 and show the behavior
of the series over the same period. Although the actual monthly manufacturing
shipments and the ISM index are meant to reflect similar information, there are
clear differences between the two series. The ISM does not make public the
formula it uses for translating its respondents’ answers into an actual diffusion
index, but it is apparent that it produces a much smoother series. At the same
time, observe that we can clearly see a common cyclical pattern between the
FRBR’s manufacturing shipments survey and the corresponding ISM index.
The regional diffusion indexes are also smoother than the actual national data,
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Figure 3 Measures of Manufacturing New Orders
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but this could be indicative of the specific regional industrial makeup of the
Third and Fifth Federal Reserve Districts. These observations all apply to the
behavior of new orders in Figure 3.

A presumption of our analysis is that manufacturing data fluctuates over
time to reflect evolving business cycle conditions. However, this is certainly
not obvious from the upper left-hand panel in Figures 2 and 3, where the series
seem primarily driven by very fast-moving random components. Economic
analysts implicitly recognize this fact when commenting on the behavior of
manufacturing data and, indeed, informal discussions of the current data are
often framed relative to other episodes. In other words, analysis of the data
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Table 1 Aggregate National Data
Percent of variance attributable to cycles with different periods

periods>8 years 1.5 years< periods<8 years periods>6 mo.

Shipments 19.00 71.30 97.90
New Orders 17.29 67.89 93.75
Employment 33.80 62.76 99.64

often involves the use filters, whether implicitly or explicitly, in the hope to
gain some insight from the series about evolving economic conditions.3 In
principle, one can apply any filter one wishes to the data (that leaves the
resulting series covariance stationary) and estimate the corresponding power
spectrum to determine to what degree business cycle components are actually
being emphasized.

To illustrate this last point, Figure 4 shows estimated power spectra for
manufacturing shipments, new orders, and employment data based on both the
series’ month-to-month and year-to-year changes. The solid vertical lines in
the figures cover the frequencies associated with the conventional definition of
business cycles, [π/9, π/48], which correspond to cycles with periods ranging
from one and a half to eight years. The dashed vertical line corresponds to
cycles with a period of six months, λ = π/3. Observe that cycles have longer
and longer periods as we move toward zero on the horizontal axis.

Figure 4 shows that month to month, both national manufacturing ship-
ments and new orders power spectra exhibit multiple peaks at high frequen-
cies. Thus, the monthly observations are driven mainly by short-lived random
periodic cycles that are not necessarily informative for the purposes of poli-
cymaking. In contrast, the power spectra for the 12-month difference of the
manufacturing data series all contain a high notable peak in the business cycle
interval, as well as a lower peak at roughly frequency λ = 0.3 (i.e., cycles
of length close to two years). King and Watson (1996) refer to the shape of
the power spectra in the right-hand panels of Figure 4 as the typical spectral
shape for differences in macroeconomic time series. Cycles that repeat them-
selves on a yearly basis, and are thus associated with seasonal changes, have
frequency λ = π/6 = 0.53, and we can see that the spectra in the right-hand
panels of Figure 4 also display a small peak just to the right of that frequency.

Table 1 gives the fraction of total variance attributable to cycles of different
lengths for the manufacturing series depicting year-to-year changes.

As in the analysis of King and Watson (1996), the business cycle interval
contains the bulk of the variance of the yearly change in these macroeconomic

3 By filters, we mean a transformation of the original time series such as a moving average
or an n > 1 order difference.
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Figure 4 Power Spectra for Actual Manufacturing Data
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Table 2 ISM Indexes
Percent of variance attributable to cycles with different periods: ISM indexes

periods>8 years 1.5 years<periods<8 years periods>6 mo.

Composite Index 18.31 59.64 94.86
Shipments 11.40 57.12 87.78

New Orders 11.69 56.40 89.12
Employment 17.83 61.62 95.80

time series. Some nontrivial contribution to total variance does stem from
longer-lived cycles (i.e., those with periods greater than eight years). At the
other extreme, virtually no contribution to variance is attributable to cycles
with periods less than six months. Observe also in Figure 4 that, outside of
the business and seasonal cycles, the power spectra are close to zero.4

3. POWER SPECTRA FOR DIFFUSION INDEXES

Figure 5 displays estimated power spectra for the ISM diffusion indexes cor-
responding to the manufacturing series in Figure 4. Interestingly, even though
the indexes not filtered in any way, all possess the typical spectral shape associ-
ated with differences in macroeconomic time series. In particular, a principle
and notable peak in each case occurs well within the business cycle interval.
The spectra for the diffusion indexes associated with shipments and new or-
ders suggest an important six-month cycle, and all indexes further emphasize
a yearly cycle with a peak occurring almost exactly at frequency λ = π/6.
The estimated spectra associated with the ISM indexes suggest virtually no
contribution from cycles with periods less than six months.

Thus, although many caveats are associated with survey-generated in-
dexes, it appears that these indexes nonetheless capture systematic aspects
of changes in economic time series that virtually mimic those of actual data.
This observation is particularly important in that survey data can be much
less costly, and always much faster, to produce than measuring changes in
actual economic data. In the case of federal regional districts, for instance,
state manufacturing data is not even collected; but corresponding diffusion
indexes can be produced by the various Federal Reserve Banks in a relatively
inexpensive and timely manner.

Finally, the power spectra shown in Figure 5 are indicative of two impor-
tant aspects of changes in economic conditions. First, it is noteworthy that
the untransformed survey data and the year-over-year changes in the national

4 Results in this case do not depend only on the natural properties of the data, but also
on the specific form of the filter. For instance, a 12-month difference filter will by construction
eliminate all variations in cycles shorter than one year.
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Figure 5 Power Spectra for ISM Diffusion Indexes
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aggregate display similar spectral shapes. Second, and related to this last
observation, while surveys allow for much discretion in the way respondents
answer questions, this discretion does not obscure the informational content
of the responses in such a way as to simply produce statistical noise, or even
emphasize high-frequency changes.

Table 2 gives a decomposition of variance for the different diffusion in-
dexes in Figure 5 according to cycles of different frequencies.

As with actual manufacturing data in Table 1, the bulk of the overall vari-
ance in diffusion indexes is contained within the business cycle frequencies,
albeit to a somewhat lesser extent. This reinforces the notion that diffusion
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indexes capture specific aspects of changes in economic conditions. In this
case in particular, and unlike the 12-month difference of actual manufactur-
ing data, the power spectra suggest that some nontrivial portion of the overall
variance in the indexes stem from shorter seasonal cycles, those associated
with six-month and one-year periods. Shorter cycles, however, appear to play
no role in respondents’ answers.

Power Spectra for FRBR Regional Diffusion Indexes

The FRBR’s manufacturing survey produces diffusion indexes according to the
formula described in the introduction for shipments, new orders, employment,
and an overall index. Fifth District businesses are also surveyed regarding
prices, as well as expected shipments and employment six months ahead.

Cyclical Properties of Manufacturing Indexes in the
Fifth Federal Reserve District

Figure 6 shows estimated power spectra for the various raw (i.e., unfiltered)
diffusion indexes produced by the FRBR in manufacturing. Perhaps most
surprisingly, it is not the case that the power spectra are indicative of mostly
short-lived cyclical noise, even at the relatively narrow regional level. On the
contrary, the diffusion indexes display distinctive patterns. More specifically,
it appears that the survey respondents do not strictly answer the questions they
are asked—(relating simply to changes relative to the previous month)—but
instead carry out some implicit deseasonalization. In particular, as with the
ISM, the spectrum for the untransformed survey display distinct similarities
with the year-over-year changes in the national aggregates. The overall manu-
facturing index, as well as shipments and new orders, display three distinctive
peaks: one in the business cycle interval, a smaller one that captures approxi-
mately a 12-month seasonal cycle at λ = 0.53, as well as distinct evidence of a
six-month cycle. Prices paid and received reported by survey respondents also
emphasize business cycle frequencies, rather than shorter-lived cycles where
the power spectrum is essentially zero. Therefore, it appears that despite the
simplicity of the questions asked, which essentially restrict respondents to
three states, the questions are asked of enough agents that the correspond-
ing diffusion index captures time variations that move strongly either with
business or seasonal cycles.

The figures for expected shipments and employment six months ahead
are somewhat less informative. Indeed, the power spectra capture variations
that are principally driven by a 12-month seasonal cycle, possibly suggesting
that respondents are basing their answers mainly on what they expect during
the course of a given year. Thus, key dates that occur on a yearly basis,
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Figure 6 Power Spectra for FRBR Manufacturing Diffusion Indexes
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such as Christmas or even, say, yearly shut-down periods driven by retooling
considerations, seem to play a key role in shaping their expectations.
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Table 3 FRBR Manufacturing Diffusion Indexes: (Unadjusted)
Percent of variance attributable to cycles with different periods

periods>8 years 1.5 years<periods<8 years periods>6 mo.

Overall Index 8.26 47.76 77.52
Shipments 3.48 38.27 65.68

New Orders 7.34 43.83 72.64
Employment 26.29 41.05 82.88
Prices (paid) 5.43 75.90 94.83

Prices (received) 20.45 52.89 83.06
Shipments–6M 2.36 14.32 52.92

Employment–6M 6.43 20.88 61.13

Table 3 gives the fraction of variance attributable to cycles of different
periods for the various manufacturing regional indexes. On the whole, these
indexes capture more movement stemming from short-lived cycles relative to
the actual manufacturing data in Table 1. Cycles with periods greater than six
months can leave up to 47 percent of the total series’ variance unaccounted for
(e.g., expected shipments six months ahead). However, except for expected
future employment and shipments, the business cycle interval does contain a
nontrivial fraction of the total variance for the various series, ranging from
38.27 to 75.90 percent. Prices paid, as simply reported in the monthly survey,
appear to move most strongly with business cycle frequencies. As suggested
above, expected employment and shipments six months ahead have the least
to do with business cycles.

Because the unfiltered manufacturing diffusion indexes are driven to a
non-negligible extent by relatively short-lived cycles that are presumably less
relevant to policymaking decisions, we also consider a six-month difference
of all the regional diffusion indexes. The idea is to eliminate variations in the
indexes that are quickly reversed in order to acquire a sharper picture of the
business cycle. In particular, it should be clear by now that spectral analysis
represents a natural tool in searching for a filter that helps isolate changes
associated with these specific frequencies.

Figure 7 displays power spectra associated with the six-month difference
of the diffusion indexes produced by the FRBR. Except for expected ship-
ments and employment six months ahead, all power spectra now have the
typical spectral shape for differences, and their main peaks lie squarely in
the business cycle interval. Evidence of a small seasonal cycle lasting one
year is also clearly distinguishable. Furthermore, as indicated in Table 4, the
business cycle interval now contains a very large fraction of the total variation
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Figure 7 Power Spectra for FRBR Manufacturing Diffusion Indexes
6-Month Difference
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Table 4 FRBR Manufacturing Diffusion Indexes: (6-Month Difference)
Percent of variance attributable to cycles with different periods

periods>8 years 1.5 years<periods<8 years periods>6 mo.

Overall Index 12.63 82.87 1.00
Shipments 7.62 84.67 1.00
New Orders 10.62 82.45 1.00
Employment 30.07 63.67 1.00
Prices (paid) 8.15 79.30 96.25
Prices (received) 20.37 72.59 99.43
Shipments–6M 4.60 49.18 79.53
Employment–6M 12.07 36.33 69.52

in the series. Interestingly, the six-month difference filter leaves the spectra
associated with prices relatively unchanged.

4. FINAL REMARKS

Information on economic activity gathered from high-frequency surveys of-
fers a timely gauge of conditions in the sector surveyed. The value of this
timely information to monetary policymakers depends not only on whether
the information accurately reflects conditions within the sector, but also on
whether the information infers something about conditions that monetary pol-
icy can address, such as movements in the business cycle. That is, if survey
results typically deviate from trend very often or very seldom, the information
gained from the results may suggest changes in economic conditions at fre-
quencies largely immune to monetary policy capabilities and may be of little
value to policymakers, even if the results are an accurate reading of sector
conditions. In contrast, if the deviations occur with a frequency similar to
that of the business cycle, monetary policymakers can use the information to
better shape policy.

In this article, we estimate power spectra for the results from two high-
frequency surveys and show that deviations from trend generally occur at
business-cycle-length frequencies in manufacturing indexes. The proportion
of variation captured in business-cycle-length frequencies is strongest for a
six-month moving average of the Richmond results.
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APPENDIX A

Some important features of the power spectrum are as follows:

• γ 0 = ∫ π
−π f (λ)dλ. In other words, the area under the population spec-

trum between −π and π integrates to the overall variance of Y .

• Sincef (λ) is symmetric around 0, γ 0 = 2
∫ π

0 f (λ)dλ. More generally,

2
∫ λ1

0 f (λ)dλ represents the portion of the variance in Y that can be
attributed to periodic random components with frequencies less than
or equal to λ1.

• Recall that if the frequency of a cycle is λ, the period of the correspond-
ing cycle is 2π/λ. Thus, a conventional frequency domain definition of
business cycles, deriving from the duration of business cycles isolated
by NBER researchers using the methods of Burns and Mitchell (1946),
is that these are cycles with periods ranging between 18 and 96 months.
Therefore, in the frequency domain, business cycles are characterized
by frequencies λ ∈ [π/48, π/9] ≈ [0.065, 0.35].

• The power spectrum is not well defined for frequencies larger than π
radians. The frequency λ = π is known as the Nyquist frequency and
corresponds to a period of 2π/π = 2 time units. To see the relevance of
this concept, note that with quarterly data, no meaningful information
can be obtained regarding cycles shorter than two quarters since, by
definition, the shortest observable changes in the data are measured
from one quarter to the next. Hence, changes within the quarter are
not observable. In contrast, with monthly data, one can refine the
calculation of the power spectrum up to a two-month cycle.

• When Y is a white noise process, Yt ∼iid N(0, σ 2), f (λ) is simply con-
stant and equal to σ 2/2π on the interval [−π, π ]. If survey-generated
data were mainly noise, therefore, one might expect a relatively flat
power spectrum with no specific frequencies being emphasized.

APPENDIX B

Estimation of the power spectrum:
Given data {Yt}Tt=1, the power spectrum can be estimated using one of

two approaches: a non-parametric or a parametric approach. Evidently, the
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simplest (non-parametric) way to estimate the power spectrum is by replacing
(4) by its sample analog,

f̂ (λ) = 1

2π

⎡⎣γ̂ 0 + 2
T−1∑
j=1

γ̂ j cos(λj)

⎤⎦ , (5)

where the “hat” notation denotes the sample analog of the population auto-
covariances. Since our hypothetical sample contains only T observations,
autocovariances for j close to T will be estimated very imprecisely and, al-
though unbiased asymptotically, f̂ (λ)will generally have large variance. One
way to resolve this problem is simply to reduce the weight of the autocovari-
ances in (5) as j approaches T . The Bartlett kernel, for example, assigns the
following weights:

ωj =
{

1 − j

k+1 for j = 1, 2, ..., k
0 for j > k

,

where k denotes the size of the Bartlett bandwidth or window. When k is
small, f̂ (λ) has relatively small variance since the autocovariances that are
estimated imprecisely (i.e., those for which j is close to T ) are assigned small
or zero weight. However, given that the true power spectrum is based on all the
autocovariances of Y , f̂ (λ) also becomes asymptotically biased. The reverse
is true when k is large; the periodogram becomes asymptotically unbiased but
acquires large variance. How does one then choose k in practice? Hamilton
(1994) suggests that one “practical guide is to plot an estimate of the spectrum
using several different bandwidths and rely on subjective judgment to choose
the bandwidth that produces the most plausible estimate.”

Another popular way to go about estimating the spectrum of a series is to
adopt a parametric approach. Specifically, one can show that for any AR(P )
process, Yt = μ + φ1Yt−1 + ... + φpYt−p + εt such that var(εt ) = σ 2, the
power spectrum (4) reduces to

f (λ) = σ 2

2π
.

⎧⎨⎩
∣∣∣∣∣∣1 −

p∑
j=1

φje
−iλj

∣∣∣∣∣∣
⎫⎬⎭

−1

, where i2 = −1. (6)

Therefore, since any linear process has an AR representation, one can estimate
an AR(P ) by OLS and substitute the coefficient estimates, φ̂1, ..., φ̂p, for the
parameters φ1, ..., φp in (6). Put another way, one can fit an AR(P ) model to
the data, and the estimator of the power spectrum is then taken as the theoretical
spectrum of the fitted process. Note that the spectrum estimated in this way
will converge to the true spectrum (as the sample size becomes large) under
standard assumptions that guarantee that the coefficient estimates, φ̂1, ..., φ̂p,
converge to the true parameters, φ1, ..., φp. Of course, the difficulty lies in
deciding on the order of the AR process. When P is small, the estimated
spectrum may be badly biased but a large P increases its variance. The
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trade-off, therefore, is similar to that encountered in using the non-parametric
approach described above. Harvey (1993) suggests that one solution that
works well in practice is to actively determine the order of the model on
a goodness-of-fit criterion, such as maximizing the adjusted R2 statistic or
minimizing Akaike’s information criterion.

For the purpose of this article, power spectra will be estimated using the
parametric method we have just described. Since we shall be analyzing time
series with monthly data, we fit an AR(P ) to each series with P being at most
24. The actual value of P is then chosen by maximizing the adjusted R2 in
each series’ estimation.
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