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DSGE Model-Based
Estimation of the New
Keynesian Phillips Curve

Frank Schorfheide

An important building block in modern dynamic stochastic general
equilibrium (DSGE) models is the price-setting equation for firms.
In models in which the adjustment of nominal prices is costly, this

equation links inflation to current and future expected real marginal costs
and is typically referred to as the New Keynesian Phillips curve (NKPC). Its
most popular incarnation can be derived from the assumption that firms face
quadratic nominal price adjustment costs (Rotemberg 1982) or that firms are
unable to re-optimize their prices with a certain probability in each period
(Calvo 1983). The Calvo model has a particular appeal because it generates
predictions about the frequency of price changes, which can be measured with
microeconomic data (Bils and Klenow 2004, Klenow and Kryvtsov 2008).
The slope of the NKPC is important for the propagation of shocks and deter-
mines the output-inflation tradeoff faced by policymakers. The Phillips curve
relationship can also be used to forecast inflation.

This article reviews estimates of NKPC parameters that have been obtained
by fitting fully specified DSGE models to U.S. data. By now, numerous
empirical papers estimate DSGE models with essentially the same NKPC
specification. In this literature, the Phillips curve implies that inflation can
be expressed as the discounted sum of expected future marginal costs, where
marginal costs equal the labor share. We document that the identification of
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the Phillips curve coefficients is tenuous and no consensus about its slope and
the importance of lagged inflation has emerged from the empirical studies.

We begin by examining how the NKPC parameters are identified in a
DSGE model-based estimation. This is a difficult question. Many estimates
are based on a likelihood function, which is the model-implied probability dis-
tribution of a set of observables indexed by a parameter vector. The likelihood
function peaks at parameter values for which the model-implied autovari-
ance function of a vector of macroeconomic time series matches the sample
autocovariance function. Unfortunately, this description is not particularly
illuminating. More intuitively, the NKPC parameters are estimated by a re-
gression of inflation on the sum of discounted future expected marginal costs.
The likelihood function corrects the bias that arises from the endogeneity of
the marginal cost regressor. We show that if one simply uses ordinary least-
squares (OLS) to regress inflation on measures of expected marginal costs,
the slope coefficient is very close to zero. This finding is quite robust to the
choice of detrending method and marginal cost measure. Hence, much of
the variation in the estimates reported in the literature is due to the multitude
of endogeneity corrections that arise by fitting different DSGE models that
embody essentially the same Phillips curve specification.

The review of empirical studies distinguishes between papers in which
marginal costs are included in the observations and, hence, are directly used
in the estimation and studies that treat marginal costs as a latent variable. In
the latter case, NKPC estimates are more sensitive to the specification of the
households’ behavior, the conduct of monetary policy, and the law of motion
of the exogenous disturbances. Estimates of the slope of the Phillips curve lie
between 0 and 4. If the list of observables spans the labor share, then the slope
estimates fall into a much narrower range of 0.005 to 0.135. No consensus
has emerged with respect to the importance of lagged inflation in the Phillips
curve. We compare estimates of the relative movement of inflation and output
in response to a monetary policy shock, which captures an important tradeoff
for monetary policymakers. We find that the estimates in the studies that are
surveyed in this article range from 0.07 to 1.4. A value of 0.07 (1.4) implies that
a 1 percent increase in output due to a monetary policy shock is accompanied
by a quarter-to-quarter inflation rate of 7 (140) basis points.

The remainder of this paper is organized as follows. We discuss the
derivation of the NKPC as well as our concept of DSGE model-based esti-
mation in Section 1. In Section 2, a simple DSGE model that can be solved
analytically is used to characterize various sources of NKPC parameter iden-
tification. Any particular DSGE model-based estimation might exploit some
or all of these sources of information. Section 3 provides empirical evidence
from least-squares regressions of inflation on the discounted sum of future
marginal costs as well as evidence from a vector autoregression (VAR) on the
relative movement of output and inflation in response to a monetary policy
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shock. We thereby characterize some features of the data that are important
for understanding the DSGE model-based parameter estimates reviewed in
Section 4. Finally, Section 5 concludes.

1. PRELIMINARIES

This section begins with a brief description of the price-setting problem that
gives rise to a Phillips curve in New Keynesian DSGE models. We then
discuss some of the defining characteristics of DSGE model-based estimation
of NKPC parameters.

Price Setting in DSGE Models

New Keynesian DSGE models typically assume that production is carried
out by two types of firms: final good producers and intermediate goods
producers. The latter hire labor and capital services from the households
to produce a continuum of intermediate goods. The final good producers pur-
chase the intermediate goods and bundle them into a single aggregate good
that can be used for consumption or investment. The intermediate goods are
imperfect substitutes and, hence, each producer faces a downward-sloping
demand curve. Price stickiness is introduced by assuming that it is costly to
change nominal prices. Rotemberg (1982) assumed that the price adjustment
costs are quadratic, whereas Calvo (1983) set forth a model of staggered price
setting in which the costs are either zero or infinite with fixed probabilities,
i.e., only a fraction of firms is able to change or, more precisely, re-optimize
prices.

Aggregating the optimal price-setting decisions of firms leads to the fol-
lowing expression for inflation in the price of the final good, referred to as the
New Keynesian Phillips curve:

π̃ t = γ bπ̃ t−1 + γ fEt
[
π̃ t+1

] + λM̃Ct + ξ̃ t . (1)

Here π̃ t represents inflation, M̃Ct is real marginal costs, and ξ̃ t is an
exogenous disturbance that is often called a mark-up shock. We use z̃t to
denote percentage deviations of a variable, zt , from its steady state. The
coefficients γ b, γ f , and λ are functions of model-specific taste and technology
parameters. For instance, in Calvo’s (1983) model of price stickiness

γ b = ω

1 + βω
, γ f = β

1 + βω
, and λ = (1 − ζ )(1 − ζβ)

ζ (1 + βω)
,

where β is the households’ discount factor and ζ is the probability that an
intermediate goods producer is unable to re-optimize its price in the current
period. In the derivation of (1), it was assumed that those firms that are unable
to re-optimize their prices either adjust their past price by the steady-state
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inflation rate or by lagged inflation. The parameter ω represents the fraction
of firms that indexes their prices to lagged inflation.

Assuming that β = 0.99, the sum of γ b and γ f is slightly less than 1
and the coefficient of lagged inflation lies between 0 (no dynamic indexation,
ω = 0) and 0.5 (full dynamic indexation, ω = 1). If ω = 0 and steady-
state inflation is 0, then 1/(1 − ζ ) can be interpreted as the expected duration
between price changes. For instance, ζ = 2

3 implies that the expected duration
of a price set by an intermediate goods producer is three quarters, which leads
to a slope coefficient of λ = 0.167. On the other hand, if ζ = 7

8 , which means
that the duration of a price is eight quarters, then the NKPC is much flatter:
λ = 0.018.

Our survey of the empirical literature will focus on coefficient estimates
for γ b, γ f , and λ rather than the model-specific preference-and-technology
parameters. The slope, λ, determines the output-inflation tradeoff faced by
central banks and affects, for instance, the relative response of output and
inflation in response to an unanticipated monetary policy shock. A detailed
exposition of the role that the NKPC plays in the analysis of monetary policy
is provided in an article by Stephanie Schmitt-Grohé and Martı́n Uribe in this
issue. The coefficient γ b affects the persistence of inflation and, for instance,
the rate at which inflation effects of shocks to marginal costs die out. This
is an important parameter, particularly for central banks that pursue a policy
of inflation targeting. If we rearrange the terms in (1), such that expected
inflation appears on the left-hand side and all other terms on the right-hand
side, then the Phillips curve delivers a forecasting equation for inflation.

DSGE Model-Based Estimation

This article focuses on estimates of γ b, γ f , and λ that are obtained by ex-
ploiting the full structure of a model economy. Thus, we consider approaches
in which the researcher solves not only the decision problems of the firms
but also those of the other agents in the economy and imposes an equilibrium
concept. If the economy is subject to exogenous stochastic shocks, the DSGE
model generates a joint probability distribution for time series such as aggre-
gate output, inflation, and interest rates. Suppose we generically denote the
vector of time, t , observables by xt and assume that the DSGE model has been
solved by log-linear approximation techniques. Then the equilibrium law of
motion takes the form of a vector autoregressive moving average (VARMA)
process of the form (omitting deterministic trend components)

xt = �1xt−1 + . . . �pxt−p + Rεt +�1Rεt−1 + . . . �qRεt−q . (2)

The matrices �i , �j , and R are complicated functions of the Phillips curve
parameters γ b, γ f , and λ, as well as the remaining DSGE model parameters,
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which we will summarize by the vector θ . The vector εt stacks the innovations
to all exogenous stochastic disturbances and is often assumed to be normally
and independently distributed.

A natural approach of exploiting (2) is likelihood-based estimation. Max-
imum likelihood (ML) estimation of optimization-based rational expectations
models in macroeconomics dates back at least to Sargent (1989) and has been
widely applied in the DSGE model literature (e.g., Altug [1989], Leeper and
Sims [1994], and many of the papers reviewed in Section 4). The likelihood
function is defined as the joint density of the observables conditional on the
parameters, which can be derived from (2). Let Xt = {x1, . . . , xt}, then

p(XT |γ b, γ f , λ, θ) = p(x1|γ b, γ f , λ, θ)
T∏
t=2

p(xt |Xt−1, γ b, γ f , λ, θ). (3)

The evaluation of the likelihood function typically requires the use of
numerical methods to solve for the equilibrium dynamics and to integrate
out unobserved elements from the joint distribution of the model variables
(see, for instance, An and Schorfheide [2007]). A numerical optimization
routine can then be used to find the maximum of the (log-)likelihood function.
The potential drawback of the ML approach is that identification problems can
make it difficult to find the maximum of the likelihood function and render
standard large sample approximations to the sampling distribution of the ML
estimator and likelihood ratio statistics inaccurate.

A popular alternative to the frequentist ML approach is Bayesian infer-
ence. Bayesian analysis tends to interpret the likelihood function as a density
function for the parameters given the data. Let p(γ b, γ f , λ, θ) denote a prior
density for the DSGE model parameters. Bayesian inference is based on the
posterior distribution characterized by the density

p(γ b, γ f , λ, θ |XT ) = p(XT |γ b, γ f , λ, θ)p(γ b, γ f , λ, θ)∫
p(XT |γ b, γ f , λ, θ)p(γ b, γ f , λ, θ)d(γ b, γ f , λ, θ)

.

(4)
Notice that the denominator does not depend on the parameters and simply
normalizes the posterior density so that it integrates to one. The controversial
ingredient in Bayesian inference is the prior density as it alters the shape of the
posterior, in particular if the likelihood function does not exhibit much curva-
ture. On the upside, the prior allows the researcher to incorporate additional
information in the time series analysis that can help sharpen inference. Many
of the advantages of Bayesian inference in the context of DSGE model estima-
tion are discussed in Lubik and Schorfheide (2006) and An and Schorfheide
(2007). The implementation of Bayesian inference typically relies on Markov-
chain Monte Carlo methods that allow the researcher to generate random draws
of the model parameters from their posterior distribution. These draws can
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then be transformed—one by one—into statistics of interest. Sample moments
computed from these draws provide good approximations to the corresponding
population moments of the posterior distribution.

Notwithstanding all the desirable statistical properties of likelihood-based
estimators, the mapping of particular features of the data into parameter es-
timates is not particularly transparent. Superficially, the likelihood func-
tion peaks at parameter values for which a weighted discrepancy between
DSGE model-implied autocovariances of xt and sample autocovariances is
minimized. The goal of the next section is to explore the extent to which
this matching of autocovariances can identify the parameters of the New
Keynesian Phillips curve.

2. IDENTIFYING THE NKPC PARAMETERS

The identification of DSGE model parameters through likelihood-based meth-
ods tends to be a black box because the relationship between structural pa-
rameters and autocovariances or other reduced-form representations is highly
nonlinear. This section takes a look inside this black box to develop some
understanding about particular features of the DSGE model that contribute to
the identifiability of NKPC parameters. Rather than asking whether there is
enough variation in postwar data to estimate the NKPC parameters reliably,
for now we focus on sources of identification in infinite samples. In practice,
the estimation of a particular model might exploit several of these sources of
information simultaneously.

Since the Phillips curve provides a relationship between marginal costs
and inflation, the measurement of marginal costs is important for the identifica-
tion of the NKPC parameters. A key feature of likelihood-based inference—as
opposed to the single-equation methods reviewed by James Nason and Gregor
Smith in this issue—is the exploitation of model-implied restrictions of con-
temporaneous correlations between variables, as well as the use of information
from impulse responses. In many instances, higher-order autocovariances of
inflation and marginal costs are an additional source of information.

While this section focuses on identifying the slope, λ, we also offer some
insights into identifying γ b and γ f . For now we assume that γ b = 0. In the
context of the Calvo model this assumption implies that the fraction, ω, of
firms that engage in dynamic indexation is zero. In this case, γ f = β. Since
β in a fully specified DSGE model is related to the steady-state real interest
rate, the coefficient γ f can be determined, for instance, by averaging interest
rate data, and its identification is not a concern. Under our simplifications, the
Phillips curve takes the form

π̃ t = βEt [π̃ t+1] + λM̃Ct + ξ̃ t . (5)
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Solving this difference equation forward we find that today’s inflation is a
function of future expected marginal costs:

π̃ t =
∞∑
j=0

βjEt [λM̃Ct+j + ξ̃ t+j ]. (6)

Observed Versus Latent Marginal Costs

The identification of λ crucially depends on whether real marginal costs are
treated as directly observable or as a latent variable. If M̃Ct is directly ob-
served and, hence, is an element of the vector xt in (2) and (4), then the main
obstacle to the identification of λ is the endogeneity problem caused by the
potential correlation between the mark-up shock, ξ t , and marginal costs. The
estimation of future expected marginal costs in (6) poses no real challenge
because Et [M̃Ct+j ] can be obtained from the reduced-form representation as-
sociated with the law of motion (2), which is always identifiable. The down-
side of including a direct measure of marginal costs in the set of observables is
that measurement errors pertaining to the marginal cost series can potentially
distort the inference about the NKPC parameters. Yet, identifying λ is more
tenuous if marginal costs are not included in the vector xt .

To make the discussion more concrete, imagine an economy in which
labor is the only factor of production and, in log-linear terms,

Ỹt = Z̃t + H̃t .

Zt is an unobserved total factor productivity process and Ht is hours worked.
Marginal costs are given by

M̃Ct = W̃t − Z̃t ,

where Wt are wages. Moreover, suppose that the households’ instantaneous
utility function is of the form

U(Ct,Ht) = C
1−1/τ
t

1 − 1/τ
− φHt,

and μt denotes the marginal utility of consumption. Under these preferences
labor supply is infinitely elastic, the wage has to satisfy Wt = 1/μt , and the
marginal utility of consumption is given by μt = C

−1/τ
t . Finally, assume that

output is entirely used for household consumption such that Ct = Yt . Then
we obtain the following link between marginal costs and output:

M̃Ct = 1

τ
(Ỹt − τ Z̃t ).

If the vector of observables, xt , contains output, wages, and hours worked,
then the marginal costs are directly observed because

M̃Ct = l̃sht = W̃t + H̃t − Ỹt .
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More generally, in models with Cobb-Douglas technology the vector xt spans
marginal costs as long as one can construct the labor share, l̃sht , from the
observables. If, however, the vector xt only contains observations on output in
addition to inflation and interest rates, then marginal costs are latent because
they depend on the observed output as well as the unobserved technology
process, Z̃t , and the unknown parameter, τ . Rewriting (5) in terms of inflation
and output yields

π̃ t = βEt [π̃ t+1] + λ

τ
Ỹt − Z̃t + ξ̃ t .

Two challenges arise. First, the presence of Z̃t exacerbates the endogeneity
problem that arises in the NKPC estimation. Moreover, the coefficient associ-
ated with Ỹt in itself does not identify the original slope parameter, λ, since it
also depends on the utility function parameter, τ , which needs to be identified
from other equilibrium relationships.

In practice, likelihood-based estimation of DSGE models relies on the so-
called state-space representation of the DSGE model, rather than the VARMA
representation in (2). Omitting deterministic trend components, the state-
space representation takes the form

xt = Ast , st = B1st−1 + Bεεt , (7)

where xt is the vector of observables, st is a vector of latent variables, and the
matrices A, B1, and Bε are functions of the DSGE model parameters. The
likelihood function associated with (7) can be computed with the Kalman fil-
ter. If the information in the vector xt does not span marginal costs directly,
then the Kalman filter constructs an estimate of the latent marginal costs (and
technology, Z̃t , in our example) based on xt and the parameters λ and θ . To
the extent that the Kalman filter inference for the latent variables is sensitive
to the assumed law of motion of the unobserved exogenous processes, infer-
ence about the slope of the Phillips curve is also sensitive to these auxiliary
assumptions.

Identifying Information in Contemporaneous
Correlations

Fully-specified DSGE models impose strong restrictions on the contempora-
neous interactions of macroeconomic variables. We will show in the context
of a simple example that these restrictions enter the likelihood function and
potentially provide important identifying information that is not used in the
single-equation approaches reviewed by James Nason and Gregor Smith in
this issue. For the remainder of Section 2 we adopt the convention that all
variables are measured in percentage deviations from a deterministic steady
state and omit tildes to simplify the notation.
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Consider the log-linear approximation of the Euler equation associated
with the households’ problem in the previous subsection:

Yt = Et [Yt+1] − τ(Rt − Et [πt+1])+ εφ,t . (8)

Rt−Et [πt+1] is the expected real return from holding a one-period nominal
bond. The parameter, τ , can be interpreted as the intertemporal substitution
elasticity of the household and εφ,t is an exogenous preference shifter. To com-
plete the model, we characterize monetary policy by an interest rate feedback
rule of the form

Rt = ψπt + εR,t , (9)

where εR,t is a monetary policy shock.
We now substitute the marginal cost expression derived in the previous

subsection into the NKPC and obtain

πt = βEt [πt+1] + λ

τ
(Yt − τZt)+ ξ t . (10)

Since the unobserved technology shock, Zt , and the mark-up shock, ξ t , affect
the equilibrium law of motion in a similar manner in this simple model, we set
Zt = 0 and let ξ t = εξ,t . Moreover, we define κ = λ

τ
and will direct our atten-

tion to the estimation of the output inflation tradeoff, κ , rather than λ. Thus,
we are essentially abstracting from the two additional difficulties that arise if
marginal costs are treated as a latent variable. Finally, it is assumed that the
three exogenous shocks, εR,t , εφ,t , and εξ,t are independently and identically
distributed zero mean normal random variables with standard deviations σR,
σφ , and σ ξ , respectively.

The linear rational expectations (LRE) model comprised of (8) to (10) can
be solved with standard methods such as the one described in Sims (2002). To
ensure that the LRE system has a unique stable solution, we impose ψ > 1,
which implies that the central bank raises the real interest rate in response to
an inflation rate that exceeds its steady-state level. Lubik and Schorfheide
(2004) show that the equilibrium law of motion for the three observables is of
the form

⎡⎣ Yt
πt
Rt

⎤⎦ = 1

1 + κτψ

⎡⎣ −τ 1 −τψ
−κτ κ 1

1 κψ ψ

⎤⎦⎡⎣ εR,t
εφ,t
εξ,t

⎤⎦ . (11)

Since our model lacks both endogenous and exogenous propagation mecha-
nisms, output, inflation, and interest rates—the three variables observed by
the econometrician—are serially uncorrelated in equilibrium. Thus, all the
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information about the slope of the Phillips curve must come from the contem-
poraneous correlations among the three observables.

The single-equation approach to the estimation of the NKPC reviewed by
James Nason and Gregor Smith in this issue can be interpreted in two ways.
First, one can write the NKPC as a regression of the form

πt+1 = 1

β
πt − κ

β
Yt − 1

β
ηt+1 − 1

β
εξ,t = α1πt + α2Yt + residt+1. (12)

Here we replaced the conditional expectation of inflation, Et [πt+1], by πt+1

and a forecast error ηt+1 = πt+1−Et [πt+1]. The lack of serial correlation in
the equilibrium dynamics implies that least-squares estimates of α1 and α2

converge in probability to zero. Hence, based on a large sample, an econome-
trician concludes that the slope of the Phillips curve is zero. The estimation
of (12) with an instrumental variable estimator that tries to correct a potential
bias due to the correlation between Yt and εξ,t is also bound to fail because
in equilibrium, lagged values of output and inflation are uncorrelated with the
regressors.

Alternatively, one can express the Phillips curve as a regression of the
form

πt = α1Et [πt+1] + α2Yt + residt . (13)

However, even if the econometrician realizes that Et [πt+1] = 0 and excludes
the expected inflation regressor, it is not possible to estimate the slope of
the Phillips curve consistently. The least-squares estimator of α2 provides a
biased estimate of κ because of the correlation between output and the mark-
up shock, which is subsumed in the residual. Instrumental variable estimation
is also uninformative because lagged endogenous variables are uncorrelated
with current output. Notice that this failure of single-equation estimation is not
directly apparent from (10). It is a consequence of the auxiliary assumptions
about the other sectors in the economy and the law of motion of the exogenous
disturbances. Nason and Smith (2008) show that the identification problems
associated with single-equation methods prevail, even if the DSGE model is
enriched with serially correlated exogenous disturbances.

DSGE model-based estimation of the Phillips curve parameters utilizes
the information in the contemporaneous relationship between output, inflation,
and interest rates.1 Let θ = [τ , ψ, σR, σφ, σ ξ ]′ and factorize the joint density
of the observables as

1 It is tempting to check identification by comparing the number of structural parameters to
the number of free parameters in the covariance matrix of Yt , πt , and Rt . In the DSGE model
described by the law of motion (11), the two parameter counts are equal to six. Unfortunately,
having at least as many estimable reduced-form parameters as structural parameters is neither suf-
ficient for identification, nor does it provide interesting insights about the sources of identification.
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p(Yt , π t , Rt |κ, θ) = p(Yt |κ, θ)p(πt |Yt , κ, θ)p(Rt |Yt , πt , θ). (14)

The first term represents the marginal density of output and the third term is
generated by the monetary policy rule. Key to understanding the DSGE model-
based estimation of κ is the second term, that is, the conditional distribution
of inflation given output. Since all the shocks are normally distributed,

πt |Yt ∼ N (E [πt | Yt ] , var[πt |Yt ])
and we can focus our attention on the conditional mean and variance.

We begin with the derivation of E[πt | Yt ]. Solving the Phillips curve
relationship forward as in (6) leads to

πt = κYt + εξ,t . (15)

Taking expectations conditional on Yt of the left-hand side and right-hand side
of (15) yields

E [πt | Yt ] = κYt + E
[
εξ,t | Yt

]
.

Using (11) and the formula for the conditional moments of a joint normal
distribution,2 we obtain

E
[
εξ,t | Yt

] = μξ |y(θ)Yt = − 1

τψ

τ 2ψ2σ 2
ξ

τ 2σ 2
R + σ 2

φ + τ 2ψ2σ 2
ξ︸ ︷︷ ︸

sh(σ 2
y ,εξ )

Yt . (16)

The conditional expectation depends on the intertemporal elasticity of substi-
tution, the policy rule coefficient, and all the shock variances. Here sh(σ 2

y, εξ )

is the fraction of the variance of output that is due to the mark-up shock, εξ,t .
We now turn to the calculation of the conditional variance of inflation. Notice
that var[πt |Yt ] = var[εξ,t |Yt ]. Thus,

var[πt |Yt ] = σ 2
ξ |y(κ, θ) = σ 2

ξ − (τψσ 2
ξ )

2

(1 + κτψ)(τ 2σ 2
R + σ 2

φ + τ 2ψ2σ 2
ξ )
.

We deduce that

p(πt |Yt , κ, θ) ∝ |σ 2
ξ |y(κ, θ)|−1/2exp{
− 1

2σ 2
ξ |y(κ, θ)

(
πt − [κ + μξ |y(θ)]Yt

)2

}
, (17)

2 Suppose that X and Y are jointly normally distributed with means μx and μy , variances

vxx and vyy , and covariance vxy ; then the conditional mean E[X | Y = y] = μx +vxyv−1
yy (y−μy)

and the conditional variance is var[X|Y = y] = vxx − v2
xy/vyy .
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where ∝ denotes proportionality.
We can draw several important conclusions from (17). First, the termμξ |y

given in (16) corrects for the endogeneity bias that arises in a regression of
inflation and marginal costs. Suppose we setψ = 1.5, which is Taylor’s (1993)
value, assume that τ = 2

3 , which makes the agents slightly more risk-averse
than agents with log preferences, and assume that 20 percent of the variation
in output is due to mark-up or cost-push shocks. Then (16) implies that a
simple least-squares regression of inflation on marginal costs, i.e. output,
in our example model, would underestimate the slope, κ , by 0.2. Second,
(17) implies that knowledge of the conditional distribution of inflation given
output does not identify the slope of the Phillips curve. Moreover, the joint
distribution of output and inflation is also not sufficient, because the marginal
distribution of output only provides information about the variance of output,
σ 2
y(κ, θ), which is insufficient to disentangle the values of all the θ elements.

We will show below, however, that κ is identifiable with knowledge of the
monetary policy reaction function.

To summarize, our simple example has a number of startling implications.
First, a single-equation estimation based on (12) or (13) is unable to deliver
a consistent estimate of κ . Second, an OLS regression of inflation on the
sum of discounted future expected marginal costs generates a downward-
biased estimate of κ . The magnitude of the bias is a function of central bank
behavior, households’ preferences, and, more generally, the importance of
mark-up shocks for output fluctuations. Third, DSGE model-based estimation
is promising but might require a prior that is informative about other model
parameters, for instance those that control the law of motion of exogenous
shocks or the conduct of monetary policy. We will subsequently elaborate on
this last point.

Identifying Information in Impulse Response
Functions

If the DSGE model embodies enough restrictions to identify a structural shock
other than ξ t from the observables, then one can potentially infer the Phillips
curve slope from the impulse response function (IRF) associated with this
shock. Consider the model analyzed in the previous subsection. Suppose
that the policy rule coefficient, ψ , is known, which means that the sequence
of monetary policy shocks can be directly obtained from interest rate and
inflation data: εR,t = Rt − ψπt . Recall from (15) that the forward solution
of the Phillips curve takes the form

πt = κYt + εξ,t .

We previously showed that the correlation between the mark-up shock, εξ,t ,
and the regressor, Yt , creates an endogeneity problem that complicates the
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identification of κ . The monetary policy shock can serve as an instrumental
variable in the identification of κ . By assumption, the monetary policy shock
is uncorrelated with εξ,t but correlated with the regressor Yt .

The argument can be formalized as follows. Suppose we factorize the
likelihood function into3

p(Yt , π t , Rt |κ, θ) = p(Rt − ψπt |κ, θ)p(Yt |Rt − ψπt, κ, θ)

p(πt |Yt , Rt − ψπt, κ, θ). (18)

Rt − ψπt measures the monetary policy shock, εR,t , and the first term cor-
responds to its density. The second factor captures the distribution of output
given the monetary policy shock. The third conditional density represents the
Phillips curve. From this factorization it is apparent that, in a linear Gaussian
environment, the following conditional expectations (we replaceRt −ψπt by
εR,t ) are identifiable:

E
[
Yt |Rt − ψπt, κ, θ

] = α11εR,t and

E [πt | Rt − ψπt, Yt ] = α21εR,t + α22Yt ,

where αij is a function of κ and θ . Since

∂Yt

∂εR,t
= α11,

∂πt

∂εR,t
= α21 + α22α11,

it follows from (11) that κ is identified by the ratio of the output and inflation
response α21/α11 + α22.

In our simple example the identification of the monetary policy shock de-
pends on the assumed knowledge of the parameter ψ , which the reader might
find unconvincing. More interestingly, there are a number of papers that esti-
mate DSGE models that are specified such that monetary policy shocks can be
identified from exclusion restrictions. Most notably, Rotemberg andWoodford
(1997), Christiano, Eichenbaum, and Evans (2005), and Boivin and Giannoni
(2006) consider models in which the private sector is unable to respond to
monetary policy shocks contemporaneously.4 In a Gaussian vector autore-
gressive system, this exclusion restriction is sufficient to identify monetary
policy shocks and the associated impulse response functions independently of
the DSGE model parameters.

3 The Jacobian associated with the transformation of [Rt −ψπt , Yt , πt ]′ into [Rt , Yt , πt ]′ is
equal to one. We maintain that θ is defined as θ = [τ , ψ, σR, σφ, σ ξ ]′ and, hence, includes ψ .

4 Rather than conducting likelihood-based inference, all three papers use an estimation method
that exclusively relies on the identification of model parameters from IRF dynamics. The structural
parameters are directly estimated by minimizing the discrepancy between the model-implied impulse
responses to a monetary policy shock and those obtained from estimating a structural VAR.
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Identifying Information in the Reduced-Form
Dynamics

The absence of equilibrium dynamics in (11) is clearly at odds with reality.
Aggregate output, inflation, and interest rates tend to exhibit fairly strong serial
correlation. This serial correlation opens up another avenue for identification
as lagged endogenous variables can serve as instruments to correct endogene-
ity biases. In fact, it is this serial correlation that single-equation approaches
rely on.

Suppose that the vector xt contains inflation, a measure of marginal costs
as well as other variables, denoted by zt : xt = [πt,MCt, z′t ]′. Moreover,
assume that the mark-up shock, ξ t , is independently distributed and that the
DSGE model-implied law of motion for xt has a VAR(1) representation:

xt = �1(λ, θ)xt−1 + ut , where ut = R(λ, θ)εt . (19)

The matrices �1 and R are functions of the DSGE model parameters, the
vector εt stacks the innovations to the exogenous driving processes of the
model economy, and ut can be interpreted as reduced-form, one-step-ahead
forecast errors. While the assumption that ξ t is serially uncorrelated is crucial
for the subsequent argument, the VAR(1) representation is not.

Define the selection vectorsM1 andM2 such thatM ′
1xt = πt andM2xt =

MCt . Equation (15) implies that the slope of the Phillips curve has to solve
the following restriction:

M1′�1xt − λM2′(I − β�1)
−1�1xt = 0 for all xt . (20)

Recall that under the assumption that ξ t is independently distributed, the for-
ward solution of the Phillips curve takes the form

πt = λ

∞∑
j=0

βjEt [MCt+j ] + ξ t .

Thus, the first term in (20) can be interpreted as the one-step-ahead VAR
forecast of inflation. The second term in (20) corresponds to the one-step-
ahead forecast of the sum of discounted expected future marginal costs, scaled
by the Phillips curve slope. As long as ξ t is serially uncorrelated, the two
forecasts have to be identical. Notice that although it might be impossible to
uniquely determine λ and θ conditional on the VAR coefficient matrix�1,�1

is always identifiable based on the autocovariances of xt , provided that E
[
xtx

′
t

]
is invertible: �1 =E

[
xt−1x

′
t

]
(E
[
xtx

′
t

]
)−1. Hence, provided that inflation is

serially correlated, the restriction (20) identifies λ.
Sbordone (2002, 2005) and Kurmann (2005, 2007) use (20) in conjunction

with reduced-form VAR estimates of � to obtain estimates of the NKPC pa-
rameters. A system-based DSGE model estimation with serially uncorrelated
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mark-up shocks can be interpreted as simultaneously minimizing the discrep-
ancy between an unrestricted, likelihood-based estimate of�1 and the DSGE
model-implied restriction function�1(λ, θ) and imposing the condition (20).

Identification of Backward-Looking Terms

Achieving identification becomes more difficult if we relax the restriction that
γ b = 0. Since insightful, analytical derivations are fairly complex, we offer
a heuristic argument and point to some empirical evidence. Three factors
contribute to the persistence of inflation: the backward-looking term γ bπ̃ t−1,
the persistence of marginal costs, and the persistence of the mark-up shock,
ξ t . Roughly speaking, we can measure inflation and marginal cost persistence
from the data (provided observations on marginal costs are available). Hence,
the challenge is to disentangle the relative contribution of γ b and the mark-up
shock to the persistence of inflation. Del Negro and Schorfheide (2006, Figure
8) display plots of the joint posterior distribution of γ b and the autocorrelation
of a latent mark-up shock obtained from the estimation of a DSGE model that
is similar to the one developed by Smets and Wouters (2003). Not surprisingly,
there is a strong negative correlation, suggesting that without strong a priori
restrictions, it is difficult to measure the magnitude of γ b. One widely used a
priori restriction is the assumption that the mark-up shock is either absent or
serially uncorrelated.

3. A (CRUDE) LOOK AT U. S. DATA

Before reviewing the DSGE model-based NKPC estimates reported in the
literature, we will take a crude look at U.S. inflation, labor share, and output
data. In view of the analysis presented in Section 2, two potentially impor-
tant sources of variation in DSGE model-based estimates are (1) detrending
methods for inflation data and marginal cost proxies and (2) endogeneity
corrections. Thus, in the first subsection we construct different measures
of steady-state deviations and compare the stochastic properties of the re-
sulting π̃ t , M̃Ct , and Ỹt series. We established that the estimation of the
NKPC parameters amounts to a regression of inflation on future expected
marginal costs. This regression, hidden within a complicated likelihood func-
tion, is plagued by an endogeneity problem, which, according to the simple
model in Section 2, leads to a negative bias of least-squares estimates of the
Phillips curve slope. It turns out that these least-squares estimates are relatively
insensitive to data definitions (second subsection), which suggests that much
of the variation across empirical studies is attributable to differences in the
endogeneity correction.

We also showed that impulse response dynamics provide useful informa-
tion about the NKPC coefficients. To the extent that a well-specified DSGE
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model is comparable in fit to a more densely parameterized VAR, evidence
(reported in the third subsection) on the propagation of a monetary policy
shock can be helpful to understand DSGE model-based estimates of NKPC
parameters. Finally, the autocovariance restrictions exploited in the DSGE
model-based estimation tend to nest those used by Sbordone (2002) to con-
struct a VAR-based minimum distance estimator. Hence, we briefly review
these minimum distance estimates in the fourth subsection.

Measures of Inflation and Marginal Costs

Most authors use the gross domestic product (GDP) deflator as a measure of
inflation when estimating New Keynesian DSGE models. Our subsequent
review focuses on estimates obtained with DSGE models in which marginal
costs equal the labor share. These estimates either include the labor share in
the vector of observables or treat marginal costs as a latent variable. In the
latter case, deviations of aggregate output from a trend or natural level are
implicitly used as a marginal cost proxy. To study the stochastic properties
of these series, we compile a small data set with quarterly U.S. observations.
The raw data are taken from Haver Analytics. Real output is obtained by
dividing the nominal series (GDP) by population 16 years and older and by
deflating using the chained-price GDP deflator. Inflation rates are defined as
log differences of the GDP deflator. The labor share is computed by dividing
total compensation of employees (obtained from the National Income and
Product Accounts) by nominal GDP. We take logs of real per capita output
and the labor share. Our sample ranges from 1960:Q1 to 2005:Q4.

We will consider three measures of π̃ t . First, π̃ (mean) is obtained by
subtracting the sample mean computed over the period 1960 to 2005 from the
GDP deflator inflation. This calculation assumes that the target inflation rate
has essentially stayed constant for the past 45 years. Second, we compute
separate means for the subsamples 1960–69, 1970–1982, and 1983–2005.
The break points are broadly consistent with the regime estimates obtained in
Schorfheide (2005). The resulting measure of inflation deviations is denoted
by π̃ (break) and reflects the view that the target inflation rate rose in the
1970s because policymakers perceived an exploitable long-run output inflation
tradeoff. Finally, we consider π̃ (HP), which can be interpreted as deviations
from a drifting target inflation rate.

We plot the inflation rate as well as the three versions of the target inflation
in Figure 1. It is apparent from the figure that views about target inflation
significantly affect the stochastic properties of π̃ t . For instance, the first-
order autocorrelations (see Table 1) are 0.88, 0.68, and 0.49 for π̃ (mean), π̃
(break), and π̃ (HP), respectively. The two panels of Figure 2 depict M̃Ct as
approximated by output movements or measured by labor share fluctuations.
In models that treat marginal cost as a latent variable, the most common
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Figure 1 Inflation and Measures of Trend Inflation
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Notes: Inflation is measured as quarter-to-quarter changes in the log GDP deflator, scaled
by 400 to convert it into annualized percentages. The sample ranges from 1960:Q1 to
2005:Q4.

marginal cost proxies are given by linearly detrended output, output deviations
from a quadratic trend, and HP-filtered output. Since the potential output series
produced by the Congressional Budget Office closely resembles the HP trend,
we are not considering it separately.5 Panel A clearly indicates that output
deviations from a deterministic trend tend to be more volatile and persistent
than deviations from the HP trend, since the HP filter removes more of the
low frequency variation from the output series. Panel B shows time series
for labor share deviations from a constant mean and an HP trend. As before,
deviations from an HP trend tend to be smoother. First-order autocorrelations
for the marginal cost measures are reported in Table 1. They range from 0.7
(HP-filtered labor share) to 0.97 (linearly detrended output).

5 In some DSGE models, e.g., Schorfheide (2005), technology evolves according to a unit
root process and the output term that appears in the Phillips curve refers, strictly speaking, to
deviations from a latent stochastic trend. We do not consider this case in the regressions reported
in this section.
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Figure 2 Measures of Marginal Cost Deviations
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Inflation and Marginal Cost Regressions

Under the assumptions that γ b = 0, ξ̃ t is serially uncorrelated, β = 0.993,
and marginal cost dynamics are well approximated by an AR(1) process with
coefficient ρ̂, one can express the forward solution of (6) as
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Table 1 Persistence of Marginal Cost and Inflation Measures

Series AR(1)
π̃ (mean) 0.88
π̃ (break) 0.68
π̃ (HP) 0.49
Ỹ (linear trend) 0.97
Ỹ (quadratic trend) 0.96
Ỹ (HP) 0.85
ls̃h (mean) 0.94
ls̃h (HP) 0.70

Notes: The table reports AR(1) coefficient estimates based on a sample from 1960:Q1
to 2005:Q4.

π̃ t = κ

(
1

1 − 0.993ρ̂Y

)
Ỹt + ξ̃ t , or π̃ t = λ

(
1

1 − 0.993ρ̂lsh

)
l̃sht + ξ̃ t ,

(21)
where lsh denotes the labor share. As in Section 2, the parameter, κ , confounds
the slope, λ, and the elasticity of marginal costs with respect to output. Least
squares regression results for (21) are summarized in Table 2. We report point
estimates of κ and λ in (12) and R2 statistics in parenthesis for the full sample
as well as three subsamples: 1960–1969, 1970–1982, and 1983–2005.

Since there is no guarantee that the mean of inflation and marginal cost
deviations is zero in the subsamples, we also include an intercept in the re-
gression. As in other studies, e.g., Rudd and Whelan (2007), we find that the
slope estimates and the R2 statistics tend to be small. The largest estimate of
κ is 0.03, obtained by regressing demeaned inflation on the HP-filtered output
using the 1960–1969 subsample. If one regresses inflation on the labor share,
the largest slope estimate is 0.05, which is obtained by using an HP-filter on
both inflation and the labor share and restricting the sample to 1970–1982.
The median slope estimate reported in the table is 0.002. The R2 values range
from nearly zero to 66 percent. If we assume that the target inflation rate has
shifted in early 1970 and 1982 and use the demeaned labor share as a measure
of marginal cost, then λ̂ = .003 and R2 is 6 percent. The Durbin-Watson
statistics (not reported in the table) for the OLS regressions indicate that the
least-squares residuals have substantial positive serial correlation.

We draw two broad conclusions for the subsequent review of DSGE
model-based estimates. First, since the least-squares estimates range from
0 to 0.03 for κ and 0 to 0.05 for λ, any variation beyond this range is most
likely caused by the endogeneity correction. Second, for the Phillips curve to
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capture the inflation persistence well, it has to be the case that lagged inflation
enters the NKPC, that the mark-up shock is fairly persistent, or that inflation
deviations are computed relative to a time-varying target inflation rate.

VAR-IRF Evidence

We explained in Section 2 that if the DSGE model imposes enough restrictions
to unambiguously identify, say, a monetary policy shock, then the response
of output and marginal costs to this shock provides useful information about
the NKPC parameters. To the extent that we would expect a well-specified
DSGE model to generate impulse responses that are similar to those obtained
from a structural VAR analysis, it is informative to examine prototypical VAR
responses to a monetary policy shock and to determine a range of NKPC
parameterizations that are consistent with these responses.

Under the assumption that lagged inflation does not enter the NKPC and
that marginal costs are proportional to output, the impulse responses to a
monetary policy shock have to satisfy

∂π̃ t+h
∂εRt

= κ

∞∑
j=0

βjEt+h

[
∂Ỹt+h+j
∂εRt

]
.

As in Section 2, we use κ to denote the slope of the Phillips curve with respect to
output. The parameter, κ , absorbs the elasticity of marginal costs with respect
to output into the definition of the slope. Suppose that the impulse responses
are monotonic and the output response decays approximately exponentially
at rate δ in response to a monetary policy shock. Then

∂π̃ t+h
∂εRt

≈ κ

1 − δβ

∂Ỹt+h
∂εRt

.

While a large literature exists (see Christiano, Eichenbaum, and Evans
[1999] and Stock and Watson [2001] for surveys) that uses structural VARs to
measure the effect of monetary policy shocks, we focus on a prominent recent
study by Christiano, Eichenbaum, and Evans (2005).

The authors estimate a nine-variableVAR using data on real GDP, real con-
sumption, the GDP deflator, real investment, the real wage, labor
productivity, the federal funds rate, real profits, and the growth rate of M2.
Christiano, Eichenbaum, and Evans (2005) find that a 15-basis point (bp) drop
in the federal funds rate (quarterly percentage points) leads to a 5-bp increase
in the quarterly inflation rate after 12 quarters and a 50-bp increase of out-
put after nine quarters.6 Hence, according to the mean impulse responses,
κ should be about 0.1 if we set the decay factor, δ, to zero and 0.05 if we

6 These numbers are approximate, based on Figure 1 in Christiano, Eichenbaum, and Evans
(2005).
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set δ = 0.5. Suppose now that we ignore the dependence in the sampling
distribution of the impulse response function estimators and let δ = 0 again.
Combining the lower bound of the reported 95 percent confidence band of the
inflation response with the upper bound of the confidence band for the output
response suggests that κ could be as low as 0.01. Combining the upper bound
for the inflation response with the lower bound for the output response leads
to a value of κ = 0.5. If we consider the labor share instead of the output
response, we can obtain an estimate of λ instead of κ . Along the mean impulse
response estimated by Christiano, Eichenbaum, and Evans (2005), the labor
share appears to drop by about 25 bp, which for δ = 0 and δ = 0.5 leads to
values of λ = 0.2 and λ = 0.1, respectively.

Evidence from Inflation and Marginal Cost Dynamics

Several papers, e.g., Sbordone (2002, 2005) and Kurmann (2005, 2007), ex-
ploit the restriction (20) to construct minimum-distance estimates of the NKPC
parameters from the estimates of an unrestricted VAR that includes inflation
and a measure of marginal costs. Using data from 1951 to 2002 on the labor
share and inflation, Sbordone (2005) obtains an estimate of λ̂ = 0.025 in the
purely forward-looking specification, and λ̂ = 0.014 and γ̂ b = 0.18 if she al-
lows lagged inflation to enter the NKPC. To the extent that the restriction (20)
is also embodied in a DSGE model likelihood function, the DSGE model-
based estimates of the NKPC parameters should be similar, provided that the
same measure of marginal costs is used, the mark-up shock is assumed to be
i.i.d., and the vector autoregressive approximation to the law of motion of the
estimated DSGE model resembles the unrestricted VAR estimates.

4. REVIEW OF EMPIRICAL RESULTS

Broadly speaking, the empirical papers reviewed in this section fall into two
categories: either marginal costs are treated as a latent variable or the set of
observables spans the labor share and, hence, the model-implied measure of
marginal costs. Consider once again the simple model of Section 2 and let us
denote the labor share as lsh. Abstracting from inference about γ b and γ f , a
study that estimates λ in

π̃ t = βEt [π̃ t+1] + λ

τ
Ỹt − Z̃t + ξ̃ t , (22)

based on observations of π̃ t and Ỹt , falls in the first category. Identification of
λ in (22) is tenuous because the presence of Z̃t exacerbates the endogeneity
problem and the parameter, τ , has to be separately estimable from the observ-
ables for λ to be identifiable. On the upside, the use of (22) is more robust to



F. Schorfheide: DSGE Model-Based NKPC Estimation 419

the presence of measurement errors in the labor share (marginal cost) series.
For some of the papers that fall into the first category, we will report estimates
of the output coefficient, κ , which corresponds to λ

τ
in the example, rather than

λ. A paper that estimates λ in

π̃ t = βEt [π̃ t+1] + λl̃sht + ξ̃ t , (23)

with observations on π̃ t and l̃sht , belongs to the second category.
Since the literature on estimated DSGE models is growing rapidly, we had

to strike a balance between scope and depth. This survey is limited to mod-
els in which firms’ price-setting equations are derived either under quadratic
adjustment costs or under the Calvo mechanism. Ongoing research explores
alternative sources of nominal rigidities that are not included in the subsequent
review, for instance, menu costs and state-dependent pricing models (Dotsey,
King, and Wolman 1999, Gertler and Leahy 2006), models with labor mar-
ket search frictions (Gertler and Trigari 2006, Krause and Lubik 2007), and
models with information processing frictions (Sims 2003, Mackowiak and
Wiederholt 2007, Mankiw and Reis 2007, and Woodford 2008). Moreover,
we focus on models in which the labor share is the model-implied measure of
marginal costs.7

The numerical values reported in Tables 3–5 refer to point estimates that
are obtained with one of four methods. In addition to papers that use Bayesian8

and maximum likelihood methods as discussed in Section 1, we consider stud-
ies that estimate the DSGE model parameters by minimizing the discrepancy
between impulse responses implied by the DSGE model and those obtained
from the estimation of a structural VAR, or by minimizing the distance be-
tween sample moments obtained from U.S. data and DSGE model-implied
population moments. The remainder of this section is organized as follows.
We review estimates that are obtained by treating marginal costs as a latent
variable. We examine studies in which the authors treat marginal costs as
observable. For monetary policy analysis, the relationship between inflation
and output is at least as important as the relationship between inflation and
marginal costs. So we examine DSGE model-based estimates of the relative
movements of inflation and output in response to a monetary policy shock.
Finally, we discuss the role of wage stickiness.

7 Krause, López-Salido, and Lubik (2008) show that in a model with labor market search
frictions, marginal costs are also affected by the labor market tightness. However, empirically they
find that matching frictions in the labor market appear to affect the cyclical behavior of marginal
costs only slightly in terms of co-movement, persistence, and volatility.

8 Bayesian inference combines information contained in the likelihood function with prior
information to form posterior estimates. Since it is difficult to disentangle the contribution of
various sources of information ex post, we restrict our attention to the posterior estimates without
examining the priors that were used to generate these posteriors.
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Latent Marginal Costs

Table 3 summarizes parameter estimates of a Phillips curve specification in
which marginal costs are replaced by output or a measure of the output gap:

π̃ t = γ bπ̃ t−1 + γ fEt [π̃ t+1] + κỸt + ξ̃ t , (24)

where ξ̃ t represents the latent variables that enter the NKPC in any particular
model. These estimates are obtained by fitting New Keynesian DSGE models
to observations of output, inflation, and interest rates. The models implicitly
share the following features: household preferences are linear in labor and
capital is not a factor of production. Estimates for κ range from values less
than 0.001 (Cho and Moreno 2006) to 4.15 (Canova forthcoming). While
the studies differ with respect to sample period as well as the detrending of
inflation and output, our least-squares analysis in Section 3 suggests that most
of the differences in κ̂ are probably due to the treatment of latent variables.
We showed that the likelihood function corrects for the endogeneity problem
that arises in a regression of inflation on future expected output due to the
correlation of the latent variables with expected output. This endogeneity
correction appears to be very sensitive to the assumed correlation among the
exogenous disturbances that enter the Phillips curve, the Euler equation, and
the monetary policy rule. Models in which the shocks in the Euler equation
and the Phillips curve are forced to be or allowed to be correlated tend to deliver
larger estimates of κ than models in which these disturbances are assumed to
be uncorrelated.9

We now turn to estimates of New Keynesian Phillips curves that are ex-
pressed in terms of marginal costs instead of output:

π̃ t = γ bπ̃ t−1 + γ fEt [π̃ t+1] + λM̃Ct + ξ̃ t . (25)

These estimates are reported in Table 4. Rabanal and Rubio-Ramı́rez
(2005) fit a canonical New Keynesian DSGE model without capital and habit
formation using a data set that contains, in addition to inflation, interest rates,
and detrended output, a measure of the real wage. For specifications in which
γ b is restricted to be zero, the authors obtain estimates of λ of about 0.015. If
γ b is estimated subject to the restriction that γ b + γ f = 0.99, the estimate of

9 Correlation arises either because the structural model implies that, say, the government
spending shock enters both the Phillips curve and the Euler equation (e.g., Schorfheide 2005),
or because authors attach reduced-form disturbances to the Phillips curve and the Euler equation
and assume that these disturbances are correlated (e.g., Lubik and Schorfheide 2004). In small-
scale models, it is often “testable” whether the exogenous disturbances are correlated. In large
DSGE models, parameters associated with the endogenous propagation mechanism and auxiliary
parameters that generate correlation between exogenous disturbances are often not separately iden-
tifiable.
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λ drops to 0.004, whereas the weight on lagged inflation in the Phillips curve
is 0.43.

The canonical three equation New Keynesian DSGE model that underlies,
for instance, the analysis in Rabanal and Rubio-Ramirez (2005) lacks persis-
tent dynamics, which makes it difficult to capture the serial correlation in U.S.
data. The lack of persistence can be overcome in part by using household
preferences that exhibit habit formation, that is, the instantaneous utility is a
function of current consumption relative to some habit stock, which in turn
depends on past consumption. Habit formation enriches the endogenous prop-
agation mechanism of the model and enhances the model’s ability to capture
the persistence in output and consumption. More importantly for us, it changes
the relationship between (observed) output and (latent) marginal costs. The
marginal utility of consumption, and thereby marginal costs, depends not just
on the current level of output, but also on past and expected future levels as
well as the parameters that determine the degree of habit formation. The es-
timates of λ reported in the second section of Table 4 range from 0.004 to
0.437.

If capital is treated as a variable input, marginal costs remain equal to the
labor share as long as the production function is of the Cobb-Douglas form.
However, if labor share observations are not used directly in the estimation,
the presence of capital affects the decomposition of marginal costs into an
observed and an unobserved component. In other words, if the DSGE model
is estimated based on observations of output, inflation, and interest rates,
introducing variable capital changes the stochastic properties of ξ̃ t in (24)
and the relationship between κ in (24) and λ in (25). The third section of
Table 4 reports NKPC estimates from six studies, ranging from 0.008 to 0.112.
Among these papers, Fernandez-Villaverde and Rubio-Ramirez (2007) allow
the parameters of the monetary policy rule and the parameters that determine
the degree of price and wage stickiness to vary over time. This allows the
authors to obtain a time series of the Phillips curve coefficient. If the slope
estimates of the Phillips curve are converted into the probability that a firm is
unable to change its price in a Calvo model (see Section 1), then the estimates
can be summarized as follows. Prices stayed constant for an average of four
quarters in the 1960s and 1970s, while inflation was relatively high and became
a bit more rigid after the Volcker disinflation. Based on a casual inspection
of the smoothed time series of the Phillips curve coefficients, λ appeared to
be, on average, around 0.06 before 1979 and subsequently dropped to 0.03.
The average estimate of γ b pre-1979 is about 0.35 and decreased to 0.3 after
1979. This pattern is broadly consistent with the notion that the NKPC is not
structural in the following sense: If a high target inflation rate makes it very
costly for firms not to change their prices—and, hence, more attractive to incur
the costs of adjusting the prices—we should observe a steeper Phillips curve
relationship.
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Observed Marginal Costs

We now turn to the Bayesian estimation of New Keynesian DSGE models
based on a larger set of observables that spans the labor share and, hence,
marginal costs as they appear in the Phillips curve. Intuitively, the use of
labor share observations should lead to a sharper identification of λ. Table 5
summarizes empirical estimates from seven studies. Most estimates are based
on a variant of the Smets and Wouters (2003) model, which augments a DSGE
model by Christiano, Eichenbaum, and Evans (2005) with additional shocks to
make it amenable to likelihood-based estimation. Smets and Wouters (2005),
Levin et al. (2006), Del Negro et al. (2007), Smets and Wouters (2007), and
Justiniano and Primiceri (2008) obtain estimates of λ of 0.01, 0.03, 0.10, 0.02,
and 0.01, respectively. The estimates of the coefficient γ b on lagged inflation
are 0.25, 0.07, 0.43, 0.19, and 0.46, respectively. Compared to the numbers
reported in Tables 3 and 4, the variation across studies is much smaller.

Impulse Response Dynamics

Much of our previous discussion focused on the marginal cost coefficient in
the Phillips curve relationship. However, from a monetary policy perspective,
equally important is the output-inflation tradeoff in the estimated DSGE model.
This tradeoff not only depends on λ but also on the elasticity of marginal costs
with respect to output. Thus, we will examine the relative movements of output
and inflation in response to a monetary policy shock, that is, an unanticipated
deviation from the systematic component of the monetary rule. Of course,
these impulse responses do not merely depend on the slope of the NKPC,
they also depend on other aspects of the model, such as labor market frictions
and wage stickiness and the behavior of the central bank. Not all the papers
for which we have reported estimates of the NKPC parameters in Tables 3
to 4 present impulse response functions. Those that do typically represent
them in graphical form. The subsequent results are based on an inspection
of impulse response plots and are summarized in Table 6.10 We report the
magnitude of the peak responses of the interest rate, inflation rate, and the
output deviation from steady state. The interest rate response is measured in
annualized percentages; that is, an entry of 0.25 implies that the monetary
policy shock raises the interest rate 25 bp above its steady-state level. The
inflation rate is not annualized and represents a quarter-to-quarter difference
in the log price level, scaled by 100 to convert it into percentages. Output
deviations are also reported in percentages. Since the length of a period in a
DSGE model is typically assumed to be one quarter, in the context of the

10 In a number of studies, it turned out to be difficult to determine whether interest rates
and inflation rates are annualized. We tried to resolve this ambiguity.



F. Schorfheide: DSGE Model-Based NKPC Estimation 425

Ta
bl

e
5

P
ub

lis
he

d
N

K
P

C
E

st
im

at
es

:
O

bs
er

ve
d

L
ab

or
Sh

ar
e

St
ud

y
Sa

m
pl

e
P

er
io

d
π
t−

1
E
t[
π
t+

1
]

M
C
t

M
et

ho
d

A
vo

uy
i-

D
ov

i
an

d
M

at
he

ro
n

(2
00

7)
,

Ta
bl

es
3–

4
19

55
:Q

1–
19

79
:Q

2
0.

27
0.

73
0.

00
8

IR
F-

M
D

A
vo

uy
i-

D
ov

i
an

d
M

at
he

ro
n

(2
00

7)
,

Ta
bl

es
3–

4
19

82
:Q

3–
20

02
:Q

4
0.

20
0.

80
0.

01
0

IR
F-

M
D

C
hr

is
tia

no
,

E
ic

he
nb

au
m

,
an

d
E

va
ns

(2
00

5)
,

Ta
bl

e
2

19
65

:Q
3–

19
95

:Q
3

0.
50

0.
50

0.
13

5
IR

F-
M

D
D

el
N

eg
ro

et
al

.
(2

00
7)

,
Ta

bl
e

1
19

74
:Q

2–
20

04
:Q

1
0.

43
0.

57
0.

10
0

B
ay

es
Ju

st
in

ia
no

an
d

Pr
im

ic
er

i
(2

00
8)

,
Ta

bl
e

1
19

54
:Q

3–
20

04
:Q

4
0.

46
0.

54
0.

00
7

B
ay

es
Ju

st
in

ia
no

an
d

Pr
im

ic
er

i
(2

00
8)

,
Ta

bl
e

1
19

54
:Q

3–
20

04
:Q

4
0.

46
0.

54
0.

00
5

B
ay

es
L

ev
in

et
al

.
(2

00
6)

,
Ta

bl
e

1
19

55
:Q

1–
20

01
:Q

4
0.

07
0.

92
0.

03
3

B
ay

es
Sm

et
s

an
d

W
ou

te
rs

(2
00

5)
,

Ta
bl

e
1

19
83

:Q
1–

20
02

:Q
2

0.
25

0.
74

0.
00

7
B

ay
es

Sm
et

s
an

d
W

ou
te

rs
(2

00
7)

,
Ta

bl
e

1A
/B

19
66

:Q
1–

20
04

:Q
4

0.
19

0.
82

0.
02

0
B

ay
es

N
ot

es
:

W
e

pr
ov

id
e

po
in

t
es

tim
at

es
of

th
e

N
ew

K
ey

ne
si

an
Ph

ill
ip

s
cu

rv
e,
π
t
=
γ
b
π
t−

1
+
γ
f

E
t[
π
t+

1
]+

λ
M
C
t
+
ξ
t,

ba
se

d
on

th
e

in
fo

rm
at

io
n

pr
ov

id
ed

in
th

e
ci

te
d

st
ud

ie
s.

E
st

im
at

io
n

m
et

ho
ds

:
B

ay
es

=
B

ay
es

ia
n

an
al

ys
is

;
IR

F-
M

D
m

in
im

iz
e

di
sc

re
pa

nc
y

be
tw

ee
n

im
pu

ls
e

re
sp

on
se

s
es

tim
at

ed
w

ith
a

st
ru

ct
ur

al
V

A
R

an
d

th
os

e
im

pl
ie

d
by

a
D

SG
E

m
od

el
.



426 Federal Reserve Bank of Richmond Economic Quarterly

“back-of-the-envelope” calculation in Section 3, the ratio of the inflation and
output response, denoted by ∂π/∂y, would correspond to κ/(1 − δβ), where
δ is the factor at which the output response decays to zero.

In Table 6 we report the number of periods it takes for the responses to
reach their respective peaks, the ratio of the peak response of inflation and
output, and the estimate of κ̂ in the underlying model. Models without capital
and with little endogenous propagation typically generate monotonic impulse
response functions. For the models without capital, the relative responses of
inflation and output range from 0.07 to 2.00. Once capital is included and
the model is augmented by additional frictions, this range narrows to 0.08 to
0.17, which seems consistent with the VAR evidence provided by Christiano,
Eichenbaum, and Evans (2005). Comparing the estimates reported in Del
Negro et al. (2007) and Smets and Wouters (2007), it appears that these
tradeoffs can be obtained with quite differently priced Phillips curve slopes,
λ: 0.002 and 0.10.

Wage Versus Price Rigidity

This article has focused on estimates of the degree of price rigidity in New
Keynesian DSGE models. Many authors believe that inflexible wages are
another important source of nominal rigidities. In fact, the DSGE models
that are based on the work of Smets and Wouters (2003), and Christiano,
Eichenbaum, and Evans (2005) incorporate both price and wage stickiness.
Following work by Erceg, Henderson, and Levin (2000), in order to gener-
ate wage stickiness in DSGE models, one typically assumes that households
supply differentiated labor services that are aggregated by labor packers into
homogenous labor services. These homogeneous labor services are in turn
utilized by the intermediate goods-producing firms. Households act as monop-
olistically competitive suppliers and are subjected to a Calvo (1983) friction:
only a fraction of households is allowed to re-optimize nominal wage. To
clear the labor market ex post, one must assume that each household has to
satisfy the demand for its labor service at the posted price.

For a joint estimation of price and wage rigidity to be meaningful, the
set of observables needs to span inflation, labor share, and wages. The joint
dynamics of inflation and the labor share provide information about the price
Phillips curve, and the wage series, together with an implicit measure of the
marginal disutility of work, contains information about the degree of wage
stickiness. Del Negro and Schorfheide (2008) estimate a variant of the Smets
and Wouters (2003) under three priors that differ with respect to a priori
beliefs about nominal rigidities. The low rigidities prior assumes that the
price and wage Calvo parameters have a beta-distribution centered at 0.45
with a standard deviation of 0.10. The high rigidities prior is centered at 0.75
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with a standard deviation of 0.1. Finally, the agnostic prior is centered at 0.6
and is more diffuse—its standard deviation is 0.2.

Posterior inference based on these priors can be summarized as follows:
both under the agnostic and the low rigidities prior, the posterior estimate
of the wage stickiness is small. The Calvo parameter is around 0.25, which
means that the households re-optimize their wages, on average, every four
months. The estimated price stickiness translates into a value of λ of about
0.22. Under the high rigidities prior, the estimates of both the wage and the
price Calvo parameter turn out to be substantially larger, namely about 0.8.
Most interestingly, the time series fit of all three specifications is very similar,
yet the policy implications are quite different. The results presented in Del
Negro and Schorfheide (2008) suggest that the macro time series we typically
consider is not informative enough to precisely measure the degree of nominal
rigidity. This conclusion is consistent with the literature survey conducted in
this section: the variation of parameter estimates reported in the literature is
substantial. No clear consensus has emerged as of now.

5. CONCLUSION

While the literature on DSGE model-based estimation of the NKPC is still
fairly young, a wide variety of results have been published in academic jour-
nals already. In most of these studies, the Phillips curve estimation is not a
goal but rather a byproduct of the empirical analysis. DSGE model-based
NKPC estimates tend to be fragile and sensitive to model specification and
data definitions, in particular if marginal costs are treated as a latent variable.
If the observations span the labor share, which is the model-implied measure
of marginal costs in the studies that we reviewed, then the slope estimates are
more stable. No consensus has emerged on the importance of lagged inflation
in the Phillips curve. Estimates are sensitive to detrending methods for in-
flation and assumptions about the autocovariance structure of the exogenous
disturbances in the DSGE model. Thus, from a policymaker’s perspective,
accounting for parameter and model uncertainty is important for prediction
and decision making.

We attempted to understand the identification of Phillips curve parame-
ters in estimated DSGE models. Unlike single-estimation approaches, DSGE
model-based estimates are able to extract information about the structural
parameters from the contemporaneous correlations of output, inflation, inter-
est rates, and other variables, as well as from impulse responses to structural
shocks that are identifiable based on exclusion restrictions hard-wired in model
specifications. Unfortunately, the data do not speak loudly and clearly to us,
and many DSGE models imply that if the model is “true,” it is difficult to
identify the NKPC parameters and the output-inflation tradeoff with only 20
to 40 years of observations.
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Identification in the context of simultaneous equations models is well
understood. To identify the slope of a supply curve we need variation in
exogenous demand shifters. Identification in DSGE models is much more
complicated. Variation in the data is created by unobserved shocks that in
most cases shift both demand and supply. Our reading of the early literature
on estimated DSGE models is that there was hope that the model-implied
cross-coefficient restrictions were so tight that identification was not a concern.
Over time the profession learned that, despite tight cross-equation restrictions,
identification should not be taken for granted, in particular in New Keynesian
DSGE models. While currently ongoing research is developing econometric
techniques to try to diagnose identification problems, it might be time to go
back to the drawing board and develop future DSGE models with parameter
identifiability in mind.
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Andres, Javier, J. David López-Salido, and Edward Nelson. 2004. “Tobin’s
Imperfect Asset Substitution in Optimizing General Equilibrium.”
Journal of Money, Credit and Banking 36 (August): 665–90.
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Krause, Michael, David López-Salido, and Thomas Lubik. 2008. “Inflation
Dynamics with Search Frictions: A Structural Econometric Analysis.”
Journal of Monetary Economics 55 (July): 892–916.
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