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1 Introduction

In a stationary environment, there is a close relationship between the solutions to the
sequential bargaining game (Rubinstein [15]) and the Nash Bargaining Rule (Nash
[14]). See, for example, Binmore [1]. In fact, when either the period of time between
each round of negotiations in the sequential bargaining game becomes small or when
the discount factor goes to unity, the two theories deliver the same predictions.

In general, however, this equivalence breaks down when the agents interact in
a non-stationary environment (Coles and Wright [4]). For the case in which the
parameters of the bargaining game change smoothly over time, Coles and Wright
develop a simple formula that can be applied to obtain the limiting solution (as the
time interval between moves approaches zero) to the alternating-offers bargaining
procedure (see also Coles and Muthoo [3] for a generalization of the arguments).

In this paper, using a similar method to the one used by Coles and Wright, I
obtain a formula that can be used to derive the outcome of bargaining negotiations
when the parameters of the game switch randomly among a finite number of possible
states. The formula is simple and reduces to the Nash solution when there is just one
state of nature. However, if there is more than one state, some important differences
arise. Some of my results are similar to the findings in Coles and Wright, but they
are much easier to interpret.

The dynamics of the parameters on the bargaining game may be induced by
the evolution of the aggregate economy. For example, market prices may indirectly
determine the feasible payoffs that each agent can obtain from negotiation. This
fact makes the bargaining solution proposed in this paper useful for applications in
macroeconomics. To illustrate this, I use the bargaining formula in two well-known

models of decentralized exchange for which the equilibrium may be subject to extrinsic



uncertainty (sunspots): (7) an economy with bilateral production matching and trade
externalities (d la Diamond [6]), and (7) a monetary random-matching economy (a
la Kiyotaki and Wright [10]).

The two examples provide interesting insights into the fundamental factors that
determine the influence of aggregate fluctuations upon equilibrium patterns of ex-
change. Nothing limits the applicability of the bargaining solution to environments
where volatility is only driven by extrinsic uncertainty (as opposed to intrinsic “real”
uncertainty). However, these sunspot examples are especially interesting due to their
sheer simplicity. The underlying driving force for most of the findings in this part of
the paper is that the relative position of agents on the two sides of the negotiation
determines the final consequences of the macroeconomic fluctuations. In particular,
if the agents in the bilateral bargaining are identical in all respects, the sunspot effects
do not alter the surplus-splitting rules, but otherwise, the presence of sunspots does
result in important changes in the relative bargaining power of the negotiators.

Bargaining power in the Rubinstein game depends on two factors: (i) the time
discounting by agents, and (ii) the threat of delay if a proposal is not “fair” enough.
In fact, agents who discount future payoffs relatively more will tend to have less bar-
gaining power and will get worse deals. This same effect is what makes volatility
(in the to-be-split surplus) affect the negotiation power when the agents are forward-
looking in their bargaining. If an agent discounts the future less, then future capital
gains (driven by the fluctuations in the environment) become relatively more impor-
tant for her and she would have a natural desire to delay the deal, expecting those
gains to be realized. This increases the bargaining power of patient agents when
there is a high probability of capital gains in the future. In the same way, a high
probability of future capital losses increases the bargaining power of impatient agents

(patient agents discount the future losses more and will be eager to close a deal as



soon as possible). This is the intuition for the main results of the paper.

The remainder of the paper is organized as follows. In Section 2, I develop the
formula for the limiting case of a sequential bargaining game when the surplus of the
match switches randomly between a finite number of states. Also in that section,
I analyze a benchmark case: the simple splitting-the-cake problem. In Section 3,
two macroeconomic examples are introduced: a labor market model with bargaining
(that can be seen as a special case of the benchmark case), and a random matching

model of money. Section 4 is reserved for concluding remarks.

2 The Bargaining Theory

In this section I derive the main result of the paper: a simple formula to obtain the
surplus-splitting rule in the specific dynamic bargaining environment. I also present
a benchmark example with a long tradition in the bargaining literature, the splitting-
the-cake problem. This example is a partial equilibrium, microeconomic application
of the theory. For its simplicity, though, it is especially useful to illustrate some of the
implications of the result. In Section 3, I discuss two more interesting macroeconomic

applications.

2.1 General Rule

Consider the following economic problem. Two agents, 1 and 2, are bilaterally
matched. Out of this encounter there is some mutually beneficial surplus that can
be produced; agents have to decide how to split that surplus between them. This
is the typical bargaining situation studied by Nash and Rubinstein. Let x € R
represent a decision variable for the agents determining how the surplus is divided.

Agent 1 has an instantaneous payoff function u;(z; ), where 6 represents a vector



of parameters that influence the size of the total surplus to be distributed.! Agent
2’s payoff function is given by us(z;6). Assume that u; : RxS — R, where S is a
finite set, and that w; is twice continuously differentiable in the first argument, with
i =1,2. Let u; be increasing and concave in x for every 6. Also, uy is decreasing
and concave in z. Agent ¢ discounts the future at rate r;, = 1,2. Agents derive zero
utility from no trade as well as from obtaining no surplus from the match. Hence,
using the participation constraints we obtain that x € [z, 7|, where x = T corresponds
to the situation where all the surplus goes to agent 1 and x = x when all the surplus
goes to agent 2. Note that the values of 0, z, and T may be changing through time.

The idea is to consider the solution to the alternating offers bargaining game
(see Rubinstein [15]) and then study the limit of this solution when the time period
between offers goes to zero. If 6, is constant through time, then it is well known that
the limit of the unique subgame-perfect equilibrium outcome of the alternating offers
game is the Nash solution with bargaining power and threat points that depend on
the details of the specific game (Binmore [1]). If 6, follows a smooth non-constant
path, then the Coles-Wright [4] solution applies.  Alternatively, we will consider
the case where 6, takes a finite number of different possible values and randomly
Jumps among them. In fact, the main interest will be in the market equilibrium of
an economy where agents get paired through a matching process and bargain to split
the mutual benefits of that match.? In this sense, §; may represent the state at time

t of the aggregate economy that for some reason determines the value of the match

Note that these are not parameters of the utility function. They represent the state of the
economy where these agents interact and they are taken as given at the individuals’ level.

2This is in the spirit of Rubinstein and Wolinsky [16], although they allow for the possibility of
exogenous breakdowns and deal only with constant surpluses. Merlo and Wilson [11] consider the
case where the surplus follows a general stochastic process (in a discrete time framework). However,
the focus in Coles and Wright [4] and the present paper is very different than that in Merlo and
Wilson [11]. Here we are mainly interested in obtaining a simple limiting solution to the sequential
bargaining game and then applying it to a macroeconomic model with the objective of investigating
its possible implications.



(see the examples in the next section).

The alternating offers bargaining procedure operates as follows. First, agent 1
makes an offer at time ¢, y(¢), that may depend on time because 0; does. Agent 2
either accepts or rejects the offer. If agent 2 accepts, then the game ends and the
payoff vector is given by [uy(y(t); 0;), ua(y(t); 0;)].> If agent 2 does not accept agent
1’s offer, then a period A of time goes on and at time ¢ + A agent 2 gets to make an
offer z(t + A). Agent 1 accepts or rejects that offer, and the game goes on in that
manner. However, 0;, the state of the aggregate economy where these two agents
interact, follows a stochastic dynamic process that switches back and forth between
a finite set of possible values. Hence, between ¢ and ¢ + A, the economy may transit
from one state to another. This may then result in a more favorable situation for
one of the two agents, who — aware of this possibility — will act accordingly when
bargaining.

More specifically, assume the aggregate state of the economy depends on a random
variable that can take values in the set S = {s,, s, ...}, and that follows a Poisson
process with transition rates 7, s, with s,s" € S.

We will restrict our attention to the case where there is no delay in the negotia-
tions. Following Coles and Wright [4] we will call this situation an Immediate Trade
Equilibrium (ITE). It is well known in the literature that delays are possible in this
type of environment (see Merlo and Wilson [11]). However, since the focus of this
paper is on comparing dynamic bargaining with the Nash solution, it is only reason-
able to restrict attention to those equilibria that have immediate trade. When delays
are part of the outcome, applying Nash bargaining is obviously inappropriate. We

will provide conditions under which an ITE exists and we will briefly discuss how the

3 Actually, the equilibrium payoff in state #, may depend on the payoff in the other possible states
(see the examples in the next section). We will keep this simplified notation for clarity of exposition.



equilibrium with delays would work.

In an ITE there exists reservation values [T15, o] such that if the economy is
in state s, agent 1 accepts an offer z from agent 2 whenever = > Z1,, and agent 2
accepts an offer z from agent 1 whenever z < Zy,.* Also, from the properties of the
payoff functions the best acceptable offer of an agent is always the reservation value
of her partner, i.e., y(t) = Tos and z(t) = Tys.

Define H, = ZS,QS\S Ty to be the hazard rate at state s. The equilibrium

reservation values in each state s satisfy the following two equations:

N 1 ~ ~
Ul(xls§ 95) — m (1 —_ AHS) u1($25; 95) + SIGZS:\S AWgs’Ul(CEQs/; 951) 9 (1)
and
N 1 ~ ~
UQ(I’QS; 05) = m (]_ — AHS) UQ(.Z‘LS; 495) + Z Aﬂ—ss’“Q(xls’; 03’) ) (2)

s'eS\s
where s # s for s, s € S and S\s denotes the set of all the elements of S excluding
s. Clearly, T1, and Ty, will be functions of A. To simplify notation, I choose not to
write the dependence on A explicitly but it should be kept in mind for the upcoming
arguments.
Let hs(A) = Zos — T15. It is shown in Appendix 1 that hs(A) = O(A) (ie.,
hs(A)/JA — ¢ € R as A — 0). Then, using the Taylor expansion of u;(Z1s;0s),

i = 1,2, around Zs, from (1) and (2) one obtains,

~ o~ hs(A o(A
ruy(Tas;0s) = (14+mA) |:U1(1'23;‘98) (A ) + (A) +
+ Z Tos (U1 (Zas; 0s) — ur(Z2s305)) |

s'eS\s

4Only history independent strategies are considered in the equilibrium to be studied. Also note
that I dropped the ¢ argument from the offer functions because the only source of dynamics will be
the switching states of the aggregate economy indicated with superscript.



and

> e hs A o(A
T2u2($25; 98) = —U2($25; 95)% + % +
+ Z T ss! (u2(/x\251; 08/) — UQ(/.Z‘\QS; 05) + O(A)) .
s'eS\s

where o(A)/A — 0 as A — 0.

Then, after some substitutions and taking limits as A — 0,° the following equation

obtains:
~ N - 1
iy (T3 05) + Y T (01(Za305) — 1 (Tors ) ACATAN
s'eS\s U1lTs; Us
1 - ~ ~
rous(Be;0s) + > Mo (U2(Ts; 0s) — u2(Twr; 0w)) | (3)

—ué(fﬁs, 03) s'eS\s

for s # s and s,s' € S. Using expressions (1) and (2) it is not hard to show
that the following set of inequalities guaranties the existence of an Immediate Trade

Equilibrium:
Tss! ui(/x\s’; 95’)
i + Hs uz(f& ‘95)

<1, (4)
s'eS\s
fori =1,2 and all s € S. To better understand this inequality we restrict our atten-

tion to the case where S has only two elements. Assume without loss of generality
that u;(ZTy;0s) > ui(ZTs;05). In this case, (4) reduces to only one restriction,®

Tss! ui(/x\s’; 95’)

< 1.

T 4 sy Ui(Ts;0)
This inequality allows for a straightforward interpretation: large discount rates, small
probabilities of switching to the states with higher surplus, and small disparities
between the size of the surplus in the different states will all increase the chances of an
ITE. This condition is related to Assumption 2 (Shrinking Pareto Frontiers) in Coles

and Muthoo [3]. T summarize the previous discussion in the following proposition.

’Note that when A — 0 it becomes irrelevant who makes the first offer (h(A) — 0 as A — 0).
6The other inequality implied by expression (4) is always satisfied.
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Proposition 1 If the state of the aggregate economy, 6, follows a Poisson process
with finite state space S and if inequality (4) holds for all s € S and i = 1,2, then
there exists an ITE and the limiting (as A — 0) splitting rule from bargaining, {Z;(t),

s € S}, satisfies the set of equations given by (3).

Remark 1 When 0, = 6, for all s, ' € S, by using concavity of the payoff functions,
it can be shown that T, = Zy. Equation (3) then reduces to the standard Nash

Bargaining solution.

Even when there is delay in equilibrium, there always exists a state s € S for
which immediate trade will occur. The idea is that there is a state of nature for
which waiting can only reduce the expected future surplus available. With this in
mind, given an interest rate and the set of transition probabilities, it is always possible
to divide the states of nature into those for which the agent would prefer to trade
and those for which she would prefer to wait. Calculating the threshold state is then
straightforward. In this paper I only study the implications of Proposition 1, which

only applies when delays do not take place in equilibrium.

2.2 Benchmark Case: Splitting the Cake

One of the most studied examples of bargaining situations is the case where two
agents with linear utility functions meet, produce a surplus (a cake) of size P, and
have to decide how to split it between the two (see for example Rubinstein [15]). Let
x be the part of the cake that goes to agent 1, and P — x the corresponding share
for agent 2. Consider a situation where the size of P depends on a random state
variable taking two possible values (s, or s;) and following a Poisson process with
transition rates [map, Tpe]. Note that as it stands, the uncertainty in the present case

is essentially intrinsic. Indeed the result in Proposition 1 is applicable to general



environments (including, but not exclusively, the sunspots case).
It is easy to see that the problem just described is a particular case of the one
in the previous subsection. The payoff functions are given by u,(x;60;) = = and

us(z;05) = Ps — x, s = S, Sp; and equations (3) are in this case,
T + 71—ss’(xs - xs’) == TQ(PS - 33'3) + Mg [Ps — Ts — (Ps’ - xs’)] )
for s,8' = 54,8, and s # §'. Define 7 = (11 + r9) /2.

e Result 1: Suppose that P;, = P;, = P. Then, x;, = x5, = (r2/7)(P/2) and if
r1 = ro, then they will split the cake in halves. These are the usual results of

traditional Nash Bargaining Theory.

e Result 2: Suppose that Ps, # Ps, and m = ro. Then z,, = Ps /2 and
x5, = Py, /2, 1.e. in spite of the dynamics in the size of the cake, they still split

it in halves. (See Theorem 3 in Coles and Wright [4] for an analogous result.)

e Result 3: Suppose that P;, # P;, and 71 # 73, then

I

T2P5a Tab 7"2—7 Psb_Psa
Ts, = —— 1+ — | =
T 2 T |T+ Tap + Tha 2

and

T _T2P8b Tha TQ_F Psb_Psa
sp — — — .
T2 T

T T T+ T 2

If, for example, P;, > P;, and 75 > 1, then z,, > (rg/7)(Ps,/2) and x5, <
(ro/T)(P,,/2)." The equilibrium payoff of agent 1, who is relatively more pa-
tient, is higher in the “small cake” state because she would be willing to wait
for the change in state relatively longer than agent 2 (this raises her reservation

value, which is what she will end up getting in equilibrium). Similarly, when

"Using these expressions for x5, and xs, and the set of inequalities given by (4) it is possible to
find restrictions over 71, ra, Ps,, Ps, and the transition rates 7 such that an ITE exists.
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the economy is in state sp, agent 1 will be eager to close a deal in the current
situation: the risk of loss from the switch in states the following A-period is
relatively more important for this agent (she is more patient, thus she cares
relatively more about future losses). For this reason, her payoff in the “big

cake” state tends to get smaller.

From this analysis, one can see that when the discount rates differ among agents,
the disparity in payoff is either accentuated by the wvariability in the size of the cake,
as in the “small cake” state s, (as x5, > (ro/T)(Ps,/2) > Ps,/2), or dissipated,
as in the “big cake” state s, (as usually (1/2)P;, < x5, < (r2/T)(DPs,/2) when m,
is relatively small). One prediction from this theory would be that one should
expect more disparate ‘surplus-splitting’ conditions during a slowdown. This would
be true whenever bargaining constitutes a substantial component of the transaction
mechanisms operating in the economy and agents differ in their discounting of the
future. Additionally, note that the payoff of the agent with the higher discount factor
(agent 2) tends to show a higher volatility when dynamic bargaining is explicitly

considered:

P, = x5, < (n/T)(Ps,/2) < (11/T)(Ps,/2) < Py, — 4,

The present discussion should serve as a preamble for the first example of the next
section, which constitutes a special case of this problem but is embedded in a general
equilibrium setup. It should be mentioned though that in the decentralized exchange
economies that we shall study next, the sunspot effects are essentially exogenous to the
match (once in the match, agents take as given that the economy where they interact
is subject to sunspot effects). This makes the analysis very much comparable to the

one in this subsection.
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3 Application: The Sunspots Case

Several well-known examples of economies with decentralized trading show that equi-
libria are often sensitive to the influence of extraneous variables that coordinate ex-
pectations. After the seminal work of Cass and Shell (see Shell [17] and Cass and
Shell [2]), it has been shown in the literature that rational expectations economies
in which the usual Arrow-Debreu assumptions do not obtain generally allow for the
existence of sunspot equilibria.® Trade frictions are one of the important factors that
generate this sunspot-type of phenomena (see for example, Diamond [6] and Howitt
and McAfee [8] for a labor market model, and Wright [22] and Shi [19] for random
matching models of money). Not surprisingly, in these economies bilateral bargaining
usually constitutes an essential part of the arrangements. The combination of these
two phenomena — bargaining and sunspots — makes decentralized exchange economies
a natural environment for illustrating the concepts developed in this paper.

In what follows, I will present two examples of economies where the formula ob-
tained in Proposition 1 can be applied to determine the outcome of a bargaining
procedure. The first application is based on extensive literature on trade external-
ities developed after Peter Diamond’s seminal work on the possible macroeconomic
consequences of Search Equilibrium Analysis (see Diamond [6], Howitt and McAfee
8], [9], and the references therein). Those models typically generate multiple equi-
libria and sunspot equilibria; however, the bargaining process is usually not explicitly
modeled (although it is clearly implicit in the analysis; see Drazen [5]).° The first

example in this section will then partly fill that gap in the literature.

8This is the so-called Philadelphia Pholk ‘Theorem’. See Shell [18].

YMortensen [12], in a model with similar characteristics as the ones considered in this paper, uses
explicit Nash bargaining with the bargaining power of agents changing through time following an
exogenous rule associated with certain indicators of the aggregate state of the economy (e.g., labor
market tightness).
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The second application is a random matching monetary economy similar to that
presented in Kiyotaki and Wright [10]. The latest generation of these types of
models has considered price determination through a bargaining procedure within
each monetary match. One interesting result out of those papers is the possibility
of multiple and sunspot monetary equilibria (see Shi [19], Trejos and Wright [20],
and Ennis [7]). Following the analysis of the previous section, it becomes apparent
that to study sunspot equilibria in these models one needs to take into account the
potential effects of extrinsic uncertainty on the bargaining outcomes. A description
of the consequences from following such strategy is provided in the second part of

this section.

3.1 Wage Bargaining and Sunspots

The first example in this section constitutes a complete description of an economy
where a large number of workers interact with entrepreneurs to produce some output.
One of the distinguishing characteristics of this economy will be the presence of
trade externalities as introduced by Diamond [6]. In fact, the present economy is a
simplified version of the one in Howitt and McAfee [8], but one in which T explicitly
analyze the bargaining process that determines wages. In this example a trade
externality acts as the driving force for the existence of multiple equilibria originated
in the possibility of coordination failures. —The multiplicity of equilibria is what
allows sunspots to affect the equilibrium allocations in the economy. Although the
model is stylized, it will illustrate how the bargaining rule obtained in Section 2 can
be introduced in a simple model to uncover some of its main implications.

Consider an economy with a large number of two types of agents: entrepreneurs
and workers. For notational convenience we will identify entrepreneurs as type 1

agents and workers as type 2 agents. There are three tradable objects: output,
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homogeneous labor services, and money (used only for payments). The output
produced by a firm (a match between an entrepreneur and a worker) has to be sold
in the market. The proceeds are divided between the entrepreneur and the worker
and they then use that money to buy other consumption goods in the market. The
market for output is perfectly competitive, but firms incur a transaction cost during
the sales process. The transaction cost is of the iceberg type; i.e., it takes the form
of a proportion of total sales. Hence, a firm employing n units of labor will have a
net revenue of
R(n,7) = [1 - £m)]f (),

where f is the firm’s production function and £(7)f(n) is the transaction cost. As-
sume that £ is a continuously differentiable, strictly decreasing function and that f is
continuously differentiable and strictly concave. The trade externality comes through
&(m), which depends upon the aggregate employment (per firm) m: the higher the gen-
eral level of employment in the economy, the easier it is to sell goods and therefore
the lower the transaction cost £(7) f(n).

At every moment in time, an entrepreneur can potentially get matched with a
worker according to a Poisson process with arrival rate 3. Assume workers meet
entrepreneurs also at rate 3. After the match is formed, output is produced and the
worker experiences disutility v(n) from labor. The firm then sells its output in the
market and pays wages. Finally, entrepreneurs and workers use the proceeds to buy
goods for consumption.

Under this setup, entrepreneurs and workers develop a bilateral relationship when
they get matched. The standard approach for this situation is to assume that they
will bargain over the distribution of the match surplus. Let x be the payment to

the workers after negotiations. Define V; to be the value for agent type i = 1,2
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of being unmatched and waiting for a potential partner. Also, let r;, 7 = 1,2 be
the time discount rates for firms and workers respectively, and x(7) the equilibrium
wage-bill when aggregate employment (per firm) is . Then, it is not hard to show
that Vi (n) = (8/r1)[R(n, ) — z(n)] and Va(n) = (6/r2)[z(7) — v(7)] in equilibrium.

Assume v(n) is continuously differentiable and strictly convex. One well accepted
bargaining procedure is the Nash Bargaining Solution. The predictions from this
solution concept are equivalent to the limiting outcomes in the alternating offers
Rubinstein game (see Binmore [1] and Muthoo [13] for a review). Then, when the
entrepreneur and the worker Nash-bargain over the amount of labor n and the payroll

x, the resulting agreement (n,z) must solve the following problem:

max[R(n,m) — z + Vi(M)]*[z — v(n) + Va(m)]'

T,n

subject to =+ V2(m) > v(n) and x < R(n,m)+ Vi(7).
From the first-order conditions (assuming an interior solution), we have that
#" = (1= a)[R(n*,m) + Vi(m)] + afv(n®) = Va(m)], ()
and
Ry(n*,m) = (1 —£m))f'(n") = v'(n). (6)
Note that, as expected, the Nash solution is “efficient” (given 7, n* maximizes net
surplus R(n,n) + Vi(n) — v(n) + Va(n) ). The weight o represents the relative
bargaining power of entrepreneurs. If one thinks of Nash bargaining as a simplified
approximation to the solution of the Rubinstein game, then a/(1 — «) is given by

the ratio of workers’ and entrepreneurs’ discount rates (ry/r1). Considering the net

payoft, x and zy, for workers and firms respectively, we see that
gy =z —v(n")+ Vo= (1-a)[R(n*,n)+ V), —ov(n*)+ Vs,

15



and

zv = R(n*,n)+ Vi — 2" = a[R(n*,n) + V] —v(n*) + V5).
That is, a proportion a of the match surplus goes to the entrepreneur and a proportion
(1 — «) goes to the worker. If both have the same discount factors (i.e., « = 1/2), it
can be shown that z* = [R(n*,7) + v(n*)]/2 when @ = n*, and they split the surplus
in half (see Result 1 in the Benchmark Case for a direct analogy). This result will
become important later when I analyze a sunspot equilibrium with equal discount

factors. Finally, note that n* is independent of the splitting rule x*.

Definition 1 A certainty equilibrium for this economy is given by the set {(m, n*, x*), (V1, Va)}
such that: 1) (n*,x*) satisfies (5) and (6); 2) 7w =n*; 3) V¥ = (6/r)[R(n*,n*) —z*]

and V3 = (B/rs)[z" — v(n")].

It should be apparent that the trade externality can generate multiple equilibria
in this economy.!” 1In fact, the higher the aggregate employment in the economy, the
easier it becomes to sell the produced goods and therefore the higher the marginal
productivity of labor. This implies higher optimum levels of employment at the firm
level and possibly a high employment equilibrium (n3;, n%,, 3;). Inversely, for low
levels of m, the marginal productivity of labor is low and this can result in low actual
employment equilibrium levels n% (see Figure 1). Clearly, where the economy is in

any period depends exclusively on how the agents get coordinated.
(insert Figure 1 here)
Sunspot Equilibrium. Assume that there are multiple certainty equilibria and

that expectations over the aggregate employment level in the economy follow a two-

state Poisson process with transition rates {mry, 7y }. In other words, the agents in

10Sufficient conditions for the existence of multiple equilibria are: v/(0) > 0, (1 — (0))f’(0) = 0,
lim,, o0 f'(n) = 0, and there exist an 7 > 0 such (1 — o(%)) f'(n) > ' ().
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the economy coordinate themselves to be in either of the two certainty equilibria (low
or high employment) according to a two-state sunspot random variable. Assume also
that regardless of the state of the economy, when an entrepreneur and a worker get
matched they always decide to produce. If one considers the limiting solution of the
alternating offers bargaining game, the outcome of the negotiations differs (in general)

11 At the moment of the negotiations, agents

from that in a certainty equilibrium.
take into account that the economy might switch to the other state at any time. This
potentially affects their reservation values. In this paper we are especially interested
in this type of effect. However, there is another important effect of sunspots on the
equilibrium quantities in the economy. The value V; of being unmatched waiting
for an arrival depends on the dynamic properties of the aggregate economy. When

sunspots matter, the value functions for entrepreneurs and workers are given by the

following system of equations:

~ o~ ~ Tss!
Vi, = s [Rs(ns, 11s) — Z) + — (Vig — VAs),
T1 T1
~ ~ Tss!
Vos = ﬁ [Is - Us(”S)] + (‘/28’ N ‘/25)’
9 )

where s,s' = L, H, s # ', and the hats indicate that these are values in a sunspot
equilibrium (as opposed to the certainty, multiple equilibria of the previous defini-
tion). The fact that Vj; and Vi depend on the sunspot variable will also influence

the equilibrium splitting rule.?

Note that if one assumes myopic behavior by the agent in a match, then a fixed exogenous rule
for splitting the surplus obtains. This is what has been done in much of the previous literature (see
Drazen [5]). Under that assumption, sunspot equilibria of this model constitute nothing more than
a trivial randomization over certainty equilibria. However, endogenizing the splitting rule through
explicit sophisticated bargaining (as in Section 2) will be shown to produce new possible observable
equilibrium outcomes. See Shell [18] for a general discussion on the importance of this issue for the
study of sunspot equilibrium.

12See Ennis [7] for a study on the influence of sunspots over the value of being unmatched in a
decentralized exchange economy.
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It can easily be shown that the equilibrium payoff for both the firm and the
workers is increasing in net surplus R(n,n) — v(n). Therefore, since the partners in
the match will always agree to maximize that surplus, the condition for production
efficiency is still satisfied. In particular, n; and ny solve versions of equation (6).
Using the general proposition from Section 2, one can determine the payroll Z; in

each state. The version of equation (3) in the current setup is,
Tl[R(ﬁs7ﬁS) — /Z'\S + ‘/15] + Tgg [R(ﬁs,ﬁs) — T+ ‘/13 — (R(ﬁsl,ﬁsl) — /x\sl + ‘/131)] =

= TQ(EE\S - /U(/ﬁs) + ‘/28) + Tss! [ZE\S - /U(/ﬁs) + ‘/28 - (/x\s’ - ’U(ﬁs’) + ‘/25’)]7

where s,s' = L, H, s # ', and ns solves Ry (ns,ms) = v'(ns). Let a = ry/(r1 + 13).

Then, the equations determining the equilibrium values of T, are given by
Ts = (1 — a) [R(ns,ms) + Vis| + a[v(ns) — Vas] +

(I){R(ﬁS’:ﬁS’) + Vig — (U(ﬁS’) - ‘/25') - [R(/ﬁmﬁS) + Vis — (v(ﬁs) - ‘/25)]}’ (7)
for s,s =L, H ;s# 5, ®=[msg(1l —2a)]/[r1 + 1ro+ 2(7ser + Tyrs)]-

These equations should be compared with those obtained using expression (5).
Note that when the discount rates of firms and workers are the same, the bargaining
power index oo = 1/2, the coefficient & = 0, and the third term in the sum disappears.
Further calculations show that zs = [R(ns,ns) + v(ns)]/2 = ¥ with s = L, H, and
the solution is immune to the existence of sunspots. (Both effects due to sunspots,
the change on the value functions and the change in the bargaining rule, wash out
when 7 = r5). In any other case, the existence of sunspot fluctuations affects the
splitting rule from bargaining. The net effect is the result of the interaction of two
channels through which sunspots influence the state of the match. On one hand,

the value functions are different than in the non-sunspots case because they depend
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on the expected dynamics of the aggregate economy. On the other hand, and most
important to this paper, the sunspots fluctuations affect the process of negotiations.
This is represented by the last term in expression (7). In particular, if ro < ry; i.e.,
if workers are more impatient than managers and if the total surplus from the match
is bigger in the high employment equilibrium situation H, then Z; tends to be lower
in equilibrium than zj, the certainty equilibrium value. The more patient side in
the negotiation is more willing to delay a deal during bad times and this increases its
bargaining power. One could say that the theory presented here predicts a tendency
to lower payrolls as a proportion of total revenue during a slump (especially when
there exists a perception among agents that the economy would, with considerable
probability, recover from the current depression). Similarly, Zy tends to be higher
than z};. During good times, firms discount less future losses and they are eager
to close a deal before the economy switches to the bad state, sacrificing in this way
some of their bargaining power. Note finally that these two implications (lower Z,
and higher Zy) tend to increase the variance of the labor share under the effect of
sunspots. The wage bill is a lower proportion of a low surplus during bad times and
a higher proportion of a high surplus during good times. However, our simplified
structure has workers that are risk neutral with respect to income. Hence, this extra

variability in income does not create any additional welfare losses for the agents.

3.2 Monetary Equilibrium, Bargaining and Sunspots

The example presented in this section consists of a random matching economy with
money (see Kiyotaki and Wright [10]). The present discussion should be regarded
as a complement to the paper by Trejos and Wright [20]. We extend their analysis to
the case of sunspot equilibrium. Although Shi [19] proved the existence of sunspot

equilibria for this model (using arguments of continuity), the actual characteristics
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of those equilibria have not been fully explored. (See Ennis [7] for a characterization
of some of the steady-state properties of these sunspot equilibria.) We will show
here that Proposition 1 can help us further understand the effects that (“excess”)
volatility have in the functioning of this type of monetary economy.

Consider the model in Trejos and Wright [20].!* Time is continuous. A unit
measure of infinitely-lived agents gets matched every period according to a Poisson
process. There is specialization in production and consumption (no agent is able
to consume what she herself produces). With probability y, a double coincidence
of wants occurs between two randomly matched agents. Otherwise, matches are
single coincidence meetings or no coincidence at all. Agents derive utility u(q) from
consuming and disutility ¢(¢q) from producing, and they discount the future at rate r.
Money is indivisible. At each date an agent can have either 0 or 1 units of money,
but no more. Goods are non-storable and divisible. After production, agents have
to consume to be able to produce again. Let M € (0, 1) be the total amount of units
of money in the economy. The previous assumptions imply that in equilibrium there
is an invariant distribution of money holdings: at every moment in time there is a
fraction M of agents holding a unit of money and a fraction (1 — M) of agents with
a production opportunity and no money.

There are two classes of matches that originate trade in this economy: monetary
matches and barter matches. In a monetary match, an agent with one unit of money
meets an agent with an opportunity to produce the good that the former wants. They
then decide how much of the good will be exchanged for the unit of money. For this,
agents engage in a bargaining procedure. In a barter match none of the agents have

money but there is a double coincidence of wants (one agent wants what the other

BFor a good discussion of the general assumptions underlying the structure of that economy, see
Wallace [21].
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can produce and vice versa). In this case, traded quantities are also determined
through bargaining.

Assume that «(0) = 0, v/(q) > 0 and u”(q) < 0 for all ¢ > 0 and that ¢(0) = 0,
d(q) > 0 and ¢’(¢q) > 0 for ¢ > 0. Also assume that v’(0) > ¢/(0) = 0 and that there
exists a ¢ > 0 such that u(g) = ¢(q).

Let V; be the value of being a producer (prior to a match) and V; the value of
holding money (also prior to a match). In a steady-state (non-sunspots) monetary

equilibrium with ¢ < g, (Vy, V1) will satisfy
rVo=Q+M (Vi — Vo —¢(Q))

and

rVi=(1=M) [u(@) + Vo = W],

where Q = (1 — M) y [u(q*) — c¢(¢*)] is the barter payoff (u/(¢*) = ¢/(¢*)). Note that
from these two equations one can solve for (V1,V;) as functions of @), the quantity of
goods for which a unit of money is exchanged in equilibrium.

The Nash bargaining problem in a monetary match is given by

max[Vy(Q) + u(q)][V1(Q) — ¢(q)]

subject to

v

Vi(Q) — c(g) Vo(Q) (8)
Vo(@Q) +ulg) = Vi(Q) 9)

where ¢ is the quantity to be exchanged in this particular match. Restrictions (8)
and (9) are individual rationality constraints for sellers and buyers, respectively.
When one takes the Nash solution as the bargaining rule for both types of matches,

Proposition 3 in Trejos and Wright [20] (see also Shi [19]) establishes that, if there
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exists a monetary equilibrium, then there are indeed two of them, a high price con-
strained equilibrium and a low price unconstrained equilibrium. In the high price
constrained equilibrium restriction (8) is binding.'*

In this paper, however, we are most interested in studying sunspot equilibria
and the implementation of the bargaining rule introduced in Section 2.  Shi [19]
established the existence of sunspot equilibria in this type of economy following ideas
first developed in Wright [22]. The basic idea is to consider the case in which
the economy randomly switches back and forth between the high and the low price
situation. We now turn to the analysis of this case.

Assume that the quantity of goods (Q)) exchanged in the typical monetary match
follows a Poisson process with transition rates 7y g, where s # s’ and s,s' € {H, L}.
Here the index H indicates high quantity (low price) states and the index L, low
quantity (high price) states.

For a sunspot equilibrium, the value of being a seller and the value of being a
buyer will depend on the current state of the economy. Hence, one can show that the

value functions are now given by
r%s = Qs + M[‘/ls - VOS - C(Qs)] + 7‘-851(‘/08’ - %5)7

and

r‘/ls = (1 - M) [U(Qs) + %s - ‘/15] + 7735’(‘/13’ - ‘/18)7

where s,s' € {H,L}, s # ¢, and Q; is the expected payoff from a barter match in
state s. These value functions are in fact functions of (Qp,@r), the inverse of the
state-contingent equilibrium price level.

When agents meet in a mutually beneficial match (either barter or monetary),

they will bargain over production. Naturally, these negotiations will be influenced

4Trejos and Wright [20] provide a threshold for the discount rate such that for given values of M
and y, if the discount rate is smaller than the threshold, a monetary equilibrium exists.
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by the fact that agents now know that the economy is switching states over time and
that the current state is only temporary.

Consider first a barter match. We will now show that the barter quantities traded
in equilibrium are independent of sunspots fluctuations. This is a direct consequence
of the fact that the two agents meeting in a match with a double-coincidence-of-wants
are symmetric across the negotiation table: Each agent is able to produce the good
that the partner would like to consume. Symmetry then implies that both agents
assess the benefits (and losses) of future price changes similarly. For this reason,
sunspots have no consequences over the relative bargaining power in a barter match.

Let agents 1 and 2 be partners in a barter match. Define J;s to be the difference

between agent i’s payoff in state s and ¢,
Jis == u(%s) - C(st) + ‘/Os - [u(%s’) - C(st’) + ‘/Os’] )

where s, € {H,L}, s # s, and i,j = 1,2, i # j. Here, g;5 is the quantity that agent
i obtains from the match in state s. Using Proposition 1 we have that in this case

equation (3) takes the form

Tgs! 1 1 T ool
= Jz’s = is) — is Vs iJ'S ) 10
s = () = ) + Vo + 0], (10)

[u(qzs) - C(st) + ‘/Os +

with s,8" € {H,L}, s # s/, and i,j = 1,2, 1 # j.

Note that if q;5 = qo5, for s = H, L, then J;; = Jos for s = H,L. In this
case, equation (10) becomes the traditional Nash bargaining rule with the unique
solution ¢* (satisfying v'(¢*) = ¢(¢*)). In Appendix 2 we show that q;5 = ¢os with
s = H,L. Therefore, we conclude that barter trades are independent of sunspots
and that 0, = Qg = Q, the nonsunspots expected payoft from barter.

For the monetary match, agents bargain only over the quantity of the good that

will be changed for the indivisible unit of money. Agents’ positions in the match are
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fundamentally disparate in this case: One has money and the other has a production
opportunity. In consequence, sunspots are bound to have important effects in the
bargaining outcome of the monetary match.

In this case, equation (3) takes the form

Voo 0 + 725 (Vi -+ a.) = Voo = ulaw) s =
- qus)[vls —e(a) + = (Vi — elas) — Vi + clas))] (11)

The results of the bargaining procedure will be given by the solution to (11) as long
as it satisfies the following participation constraints: Vi, — ¢(gs) > Vi, for the seller
and Vs + u(gs) > Vi, for the buyer. It can be shown that the latter constraint is

15 Hence, to find a solution to the bargaining

binding only when the former is binding.
problem only the sellers’ constraint (the agent with the production opportunity) is
relevant.

Define Ay = Vs — Vig = —Aygrs, with i = 0, 1. These A’s are again functions of

(Qu,Qr), the inverse of the equilibrium price level. Define T'(Q)) as the function

T(Q) = [(r+ M)(1 = M)u(Q) — 2c(Q)u(Q) — [Pu(Q) — M(r+1 — M)c(Q)](Q)
with ® = r(1+7)+M(1—M). Then, equation (11) can be rewritten as T5(Qs, @s) = 0
where 5,8 € {H, L}, s # s, and T5(Qs, Q) is given by

TS(QSJ Qs’) = T(Qs) + [(1 - M)UI(QS) - (1 +r— M)CI(QS)](Q - 7"-ss’AOM’)_

[(T + M)UI(QS) - MC/(QS)]T‘-SS’Alssl_ (12)

[UI(QS) (c(Qs) — c(Qf) — Asssr) + CI(QS) (u(Qs) — u(Qsr) + Agssr )| (1 + 1) 750

15This statement is associated to the fact that for a sunspot equilibrium to exist the transition
rates need to be relatively small.
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When there are no sunspots and no barter possibilities (€2 = 0) the equilibrium
values of () are given by the solutions to T(Q)) = 0. There is a unique monetary
equilibrium in this case. In the case with barter (€2 > 0) and no sunspots, there
are two monetary equilibria, one low-price unconstrained equilibrium that solves
Ts(Q,Q) = 0, and a high-price constrained equilibrium that satisfies the seller’s par-
ticipation constraint with equality (see Trejos and Wright [20] and Shi [19]). Gener-
ically, for small enough values of {7sy}, a sunspot equilibrium will exist switching
from the constrained to the unconstrained equilibrium (this is essentially the exis-
tence result in Shi [19]).' Equation (12) then holds for s = H. The quantity traded
at state L, @, satisfies Vi, — ¢(Qr) = Vo, When agents act myopically during the
bargaining process (i.e., when the traditional Nash solution is used), the last term in
the RHS of equation (12) disappears and the rest of the analysis proceeds in the same
manner. In general, we should be able to identify in this last term the same type
of effects that resulted from using the dynamic bargaining formula (3) in the labor
market example. In this model, one can expect that in the low-price (high quantity)
state H, the agent holding a unit of money will be eager to close a deal. This is
because the producer in the match would lower the quantities that she is willing to
produce (in exchange for the unit of money) if she discovers that the economy has
switched to the high-price (low quantity) state. In a sunspot equilibrium there is al-
ways a chance that the economy will presently switch states during the negotiations.
For this reason, the money holder will try to speed up the deal in the low-price state
and hence, lose bargaining power. As a consequence, the buyer (the money holder)
will get relatively smaller quantities in equilibrium in this state (relatively smaller

than when using the myopic Nash bargaining rule). For this intuition to hold the

161t is easy to see that when {r} — 0, the function Ts(Qs, Q) converges to the function T(q)
used by Trejos and Wright [20] in the proof of their Proposition 3. The existence of a sunspot
equilibrium is a direct implication of this.
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last term in equation (12) would have to be negative. This requires that

U (Qu) [e(Qu) — e(Qr) — Avpr] + ¢ (Qu) [w(Qu) — u(Qr) + Agsr] > 0 (13)

It can be shown that Agzr > 0. This is because in state H the seller obtains a
positive surplus from the match even though she has to produce a larger quantity.
In state L, the seller gets zero surplus as the quantity for the trade is determined
according to the participation constraint. It is also the case that Ay > 0. This
introduces an ambiguity in the sign of expression (13). For most cases though, the
sign can be easily shown to be positive.

The quantity traded in state L does not directly depend on the fact that we use
the dynamic bargaining formula. However, as the value functions depend on the
equilibrium quantities in both states, there is actually an indirect effect. Generally
we can expect that this effect will not be very significant (see Ennis [7]).

In summary, introducing dynamic bargaining in the model has important im-
plications for the quantities traded, and hence the equilibrium price level. In fact,
because the quantities in the low-price state will tend to be lower, we can conclude
that forward-looking bargaining tends to reduce price volatility within this (extrinsic

uncertainty) equilibrium.

4 Conclusions

In this paper I have developed a formula for the limiting immediate trade solution
to the alternating-offers bargaining game (as the time interval between offers goes to
zero) in an economy subject to stochastic dynamics. The aggregate state variable
is assumed to follow a Poisson process defined over a finite set of possible values.
The formula is relatively simple and intuitive. Although this dynamic bargaining

solution has strong similarities with traditional Nash bargaining, there are important
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differences. I showed that as agents anticipate the switch in the state, they modify
their reservation values for closing a deal during negotiations. This results in a
different final outcome of the game.

To suggest the broad applicability of these results, I present examples of economies
for which this bargaining rule applies. In particular, I analyze in depth the implica-
tions of dynamic bargaining in decentralized exchange economies. In these examples,
aggregate variables are not “sticky” in that they can jump as sunspots realizations
coordinate agents among possible equilibrium outcomes. It is very clear that the case
of sunspot equilibrium is only one of the many possible applications of this sophisti-
cated bargaining solution concept. In fact, shocks to fundamentals that follow our
specific stochastic dynamics can easily be studied — with only a slight modification
in our formula.

To start characterizing the consequences of the new bargaining solution, I intro-
duce a benchmark case, the traditional splitting-the-cake problem. In this case, the
impatient agent gets a smaller share from negotiations when the size of the cake is
relatively small and there is a given probability that it will get larger in the near
future. This is primarily a partial-equilibrium example and the uncertainty over the
size of the cake is assumed to be exogenous (and in a way, purely intrinsic).

In the third section of the paper, I present a pair of fully specified economies where
agents get matched and bargain over the splitting of a surplus that they jointly gen-
erate. These examples are interesting on their own. For the first application, I
introduced a complete economy with bilateral production matching and wage bar-
gaining. In this economy, a trade externality generates the possibility of sunspot
equilibria as a result of a coordination failure. One of the main ideas illustrated
by this application is that the effect of macroeconomic fluctuations over bargaining

strongly depends on the agents’ relative positions in the match. If the agents in a

27



match are symmetric in all other respects, then the differences in discount factors
play a very important role. In particular, when the discount rates are the same
(so that agents have equivalent bargaining power), the bargaining outcomes are im-
mune to sunspots and the sunspot equilibria are trivial randomizations over certainty
equilibria. However, when the discount rates differ, similar conclusions to those in
the splitting-the-cake problem are reached: if workers are more impatient than en-
trepreneurs, one would predict higher volatility in the wage bill (as a proportion of
income) due to the forward-looking bargaining rule and the sunspot dynamics.
When agents have asymmetric positions in the bargaining game, the implications
of the theory are less apparent, but still consequential. The second application in
the paper is an attempt to understand one of these cases. It consists of a monetary
random matching economy with bargaining and sunspots. The bargaining solution
method proposed in this paper is applied to the example. 1 study the possible
effects of dynamic bargaining and macroeconomic fluctuations upon state-contingent
prices. Two types of matches need consideration in this case, barter matches (double
coincidence of wants and no money) and monetary matches (single coincidence of
wants and money). Again, the players’ relative positions for negotiation are critical.
In the barter match where agents are completely symmetric, sunspots fluctuations
do not alter the bargaining solution. However, in monetary matches, agents are
fundamentally different (one is a seller and the other is a buyer). In such a situation,
price volatility will tend to be reduced in equilibrium when the presence of forward-

looking bargainers is taken into consideration.
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Appendix 1
In what follows, it is shown that hs(A) = Zos(A) — Z15(A) converges to zero at
rate A as A approaches zero. First note that from (1),
U1 (T15;05) — 1 (Tas; 05) = —Aruy (7153 05) + A Z T (U1 (Tag; Osr) — w1 (Tas; 0s)).
s'eS\s
(14)

Clearly, from this expression, we have
u1(ZT15;05) — 1 (Tas;05) — 0 (15)

as A — 0. Since u;(e;05) is continuous and strictly increasing, this implies that we
have T15(A) — Tos(A). As a consequence, hy(A) — 0 as A — 0. It is not difficult
to see that Z;5(A) converges (i = 1,2 and s € S): 7;s(A) is a differentiable function
of A with bounded derivative and hence uniformly continuous; this guarantees that

lima o Z;s(A) exists. Then, by the continuity of u; again,

. uy(Trs;05) — ug(Tas; O . . .
lim 1o )A 1(T2ife) —ru (@s; 05) + ES\ Tos (U (T ) — w1 (T3 05)]
s'eS\s

715 € R. (16)

We also know that

hm Uy (325 + hs(A)a 03) - Ul(/x\QS; ‘95)

= eR
hs(A)—0 hs(A) T2s

because u1(e; d;) is differentiable. Finally, since hs(A) is a continuous function of A,

we can write
. U1 (ZE\QS + hs(A)a 98) - ul(/x\%; 95) A o
A% A h(8) T

Substituting (16) in (17), we get

(17)

Vi 1M ———

A0 hS(A) = Ya2s>
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which says that hs(A) = O(A).

Appendix 2

In this appendix we show that q;s = qos with s = H, L in a barter match for the
monetary economy of Section 2.2.

Suppose not. Suppose, without loss of generality, that we have q;5 < ¢o5 for some
s and every possible m,y. Define A;;5 = u(q;s) — c(g;s) + Vos for i # j and ¢, =1, 2.

Also define
(T + FSS’)AQIS — Tgs! A213’

58 (T + ﬂ—ss’)AAIQ.s — 7"-.5.5’14123’ ‘

From expression (10) we have,

Since Ags > Ajgs and €, < 1 we have that Agjy > Ajoe. This implies that g5 < gos
and hence that ¢, < 1. Summarizing, we have that (i) £, < 1,(%) £, < 1,(iii)
Agys > Aqas, and (i) Ag1g > Ajoe. We show now that these four inequalities can not

all hold at the same time. From £, < 1 we obtain that

Tsts

Agy < Ajgy + . (Ag1s — Ajay).

+ s
Replacing this in the inequality given by &, < 1 we have that

T+ Tss! Tsls
- (A1 — Args) <0,

Tss! T+ Tsts

which implies that Ags < Ajss. This contradicts inequality (iii) above. In other
words, by assuming that ¢;5 # ¢o5 for some s, we have reached a contradiction. Hence,

we conclude that g1, = ¢o, for all s.
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Figure 1: Multiplicity of Equilibria
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