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Abstract

This paper considers an asset market where investors have private information not

only about asset payoffs, but also about their own exposure to an aggregate risk factor.

In equilibrium, rational investors disagree about asset payoffs: Those with higher exposure

to the risk factor are (endogenously) more optimistic about claims on the risk factor. Thus,

information asymmetry limits risk sharing and trading volumes. Moreover, uncertainty

about exposure amplifies the effect of aggregate exposure on asset prices, and can thereby

help explain the excess volatility of prices and the predictability of excess returns.
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1 Introduction

Recent events have renewed interest in the role of heterogeneous beliefs for asset prices. Two

prominent literatures model speculative trading. One studies the interaction of investors with

(exogenously given) heterogenous beliefs about asset payoffs in the presence of trading frictions,

in the tradition of Harrison and Kreps (1978). Recent work in this vein emphasizes shifts in

wealth across optimists and pessimists.

A second literature considers rational expectations equilibria with private information in

the tradition of Grossman (1976). Work in this area emphasizes endogenous formation of

beliefs about asset payoffs through learning from prices. At the same time, it typically makes

assumptions on preferences, technology and information so that the distribution of investors’

initial positions or shifts in wealth across investors do not matter for prices.

This paper considers asset markets where investors not only receive private signals about

the payoffs on tradable assets, but also learn about shifts in the distribution of others’ positions

by observing their own position. The latter inference is relevant, for example, when there are

aggregate shocks to the value of nontraded or very illiquid assets such as bank loans, private

equity, or human capital. The distribution, and often even the aggregate quantity, of illiquid

assets owned by participants in an asset market is arguably difficult to observe. Nevertheless, it

can be important for trading and valuation of more liquid tradable assets if it affects investors’

overall risk exposure, which is generally a function of their total portfolio.

Consider, as an illustration, institutional investors who trade in the (liquid) public equity

market. If their (illiquid) loan or private equity positions lose value, they may conclude that

there has been a drop in aggregate net worth since other institutions presumably suffered a

loss too, thus increasing the overall exposure of the financial system to public equity risk. Of

course, investors can look at stock price movements to try to learn the shock to aggregate

exposure to equity. However, if prices are also affected by dispersed information about future

equity payoffs, learning may be incomplete. The purpose of the present paper is to explore the

role of aggregate exposure shocks for asset prices and trading volume in the presence of private

information.

We show how, with private information about both payoffs and aggregate exposure, rational

investors choose to disagree about asset payoffs in equilibrium. In particular, those investors

with higher initial exposure to a risk factor will be more optimistic about claims on that

risk factor, so that there is less risk sharing than under symmetric information. Moreover,
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uncertainty about exposure amplifies the effect of aggregate exposure shocks on prices and can

thereby help explain their excess volatility; in particular, shocks to aggregate exposure can

jointly generate “excessively” low prices and low trading volume.

In the absence of private information, our model works like the standard representative agent

pricing model in Lucas (1978). We consider an exchange economy without trading restrictions

such as short-sale or leverage constraints. There are enough assets available so investors’ en-

dowments are tradable. Preferences exhibit risk aversion and can allow for wealth effects—our

leading example assumes log utility. With symmetric information, there is then a stochastic dis-

count factor m, proportional to representative agent marginal utility, so the price of a tradable

risk factor τ can be written in the standard way as

p = E [mτ ] = E [τ ] /Rf − e var (τ) ,

where Rf is the risk-free interest rate, the mean and variance of τ reflect investors common

beliefs, and e ≡ cov(m, τ)/var (τ). We refer to e here as the aggregate exposure of the economy

to the risk factor τ . It generally depends on the distribution of initial positions and preferences,

and the direct effect of shocks to aggregate exposure is to lower prices and increase risk premia,

holding beliefs fixed.1 Trading volume then follows from investors sharing risk, in the sense of

equating (initially heterogenous) individual exposures to τ -risk.2

In the presence of with private information, there are two elements in the asset-pricing

formula above where heterogeneous beliefs are pertinent: information about the payoff distri-

bution for τ (its mean and variance in the formula) and information about aggregate exposure

e. If the price is the only public signal in the economy, then these two elements will not be

revealed. For example, if the asset price is low, investors cannot know whether this is a result of

dispersed private signals about payoffs on average conveying bad news, or a result of dispersed

knowledge of positions on average conveying high aggregate exposure. For this reason, notice

that while the direct negative effect of an aggregate exposure shock on prices remains present

to its full extent, there is now also a negative indirect, or “spillover” effect on beliefs, as the

exposure shock is partly mistaken for bad news.

While an aggregate exposure shock is amplified by the presence of private information,

an aggregate news shock about payoffs is dampened. This is true even though it is partly

1We describe prices using payoffs and aggregate exposure e, rather than simply payoffs and the stochastic
discount factor m because e is the particular moment that matters for information aggregation in our models.
For example, fully informative equilibria exist if e is constant, regardless of other properties of m.

2Since exposure depends on preferences, this need not mean that all investors hold the same portfolio.
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misunderstood as an exposure shock—bad news leading to a price fall can be interpreted also

as a rise in aggregate exposure. The key difference is that news about payoffs have no spillover

effects on prices via exposure. Indeed, payoffs news change beliefs about aggregate exposure, but

what matters for prices in our model is actual aggregate exposure, not beliefs about exposure.

A key insight in our paper, therefore, is that payoff-relevant news shocks and exposure shocks

are qualitatively very different in a world with private information. In particular, the price

reaction to exposure shocks relative to that to news shocks about payoffs is stronger under

private information.

With private information, trading volume is no longer driven only by the desire to share

risk, but also by differences in beliefs, due in turn to different inferences from signals and prices.

Consider, for example, an investor who starts from high initial exposure to the tradable risk

factor, and thus believes that others investors have high exposure as well. This investor will

endogenously become more optimistic about the asset payoff than an investor with low initial

exposure. The reason is that high-exposure investors will tend to extrapolate from their own

exposure to think that the aggregate exposure is high, putting downward pressure on the price;

however, low-exposure investors observe the same price and Bayesian reasoning will then lead

high-exposure agents to have more optimistic views about payoffs than will low-exposure agents.

The effect of aggregate exposure shocks on prices and volume helps provide an interpretation

of the 2008 US financial crisis. Think of τ as the risk associated with the US housing market

and of investors as financial institutions trading mortgage-backed bonds. Banks’ exposure to

the housing market depends on default probabilities and recovery rates for mortgage bonds.

In particular, aggregate exposure is high if more mortgage bonds are “junk”—with payoffs

highly dependent on house prices—rather than “high quality”—with essentially riskless payoffs.

If aggregate exposure is known, then the mortgage bond market aggregates banks’ private

information about house values, banks agree on the course of the housing market and share

exposures, between banks that have originated more subprime loans with junk payoffs and

banks that have originated more high quality loans.

Consider now a shock that increases some individual banks’ exposures to the housing mar-

ket, where both the scale of the shock and the identities of the affected banks remain unknown.

A trigger for such a shock might be loss of trust in rating agencies due to information about

their mistakes in rating specific bonds.3 Our model says that such a shock would generate a

3In addition, an aggregate exposure shock may be accompanied by bad news about the housing market,
and our model allows this. Notice also in this context that the exposure shocks might be thought in terms

3



drop in prices to unusually low levels—below what an observer would rationalize as the present

value of houses—together with a drop in trading volume. When aggregate exposure is uncer-

tain, the price does not properly aggregate banks’ dispersed information about housing and

hence becomes a worse signal of things to come.

The fall in volume in our model—like the much-discussed “market freeze” in 2008—does

not occur because the market stops working. Instead, risk sharing motives are counteracted

by speculative motives for trade. In particular, those investors with high exposures end up

viewing low quality mortgage bonds as relatively good investments—they believe low prices

reflect increased aggregate exposure to the housing market rather than bad news about house

prices. As a result, they prefer not to trade away their risky assets and instead held on to them.

More generally, we show how the excess responsiveness of prices to exposure increases the

predictability of asset prices. In standard asset-pricing models, high prices are followed by low

returns, and vice versa: time-varying risk, or aversion to risk, leads prices to be low when risk

is high, at the same time implying high risk premia, i.e., high average subsequent returns. This

feature is present here as well: Exposure shocks are shocks that arise from higher risk, or risk

aversion, but because they are over-reacted to, predictability is more potent, both in terms

of the magnitude and the fit of a typical predictability regression. In our model, moreover,

dividend shocks are qualitatively different: They are under-reacted to.

Finally, our model may also help understand some more regular, and long-since noticed,

features of the data such as the high risk premia for holding stock. Our economy can deliver

different premia than its symmetric-information, Lucas counterpart, but here the direction of

the effect depends on the wealth distribution and on details of the shock distribution. If, namely,

wealth effects are important and wealthy traders are more pessimistic than poor traders, then

risk premia will be large, but whether this wealth-pessimism pattern holds in the data is an

open question. What the present paper at least suggests is that this mechanism is worthy of

further study.

The rest of the paper is structured as follows. Section 2 briefly discusses the relevant

literature and how we view our paper as adding to it. Section 3 introduces the model, which

is simple in that it involves consumption at one date only but which otherwise uses rather

general assumptions, and defines a competitive equilibrium under asymmetric information.

Section 4 develops our notion of exposure. Above, exposure was defined using the simple asset-

of securities going from being “information-insensitive” to “information-sensitive,” in the sense of Dang et al.
(2013).

4



pricing equation as the covariance between the risk factor τ and the stochastic discount factor,

normalized by the variance of the risk factor. We show that this definition represents the

premium the representative agent is willing to pay to avoid a marginal increase in τ -risk. We

look at exposure on the individual level—before and after trading—and at aggregate exposure,

and we discuss a rather general preference structure, along with conditions under which prices

will only partially reveal all relevant aggregate information.

Section 5 then describes a specific example economy—our “benchmark economy,”with log-

arithmic utility and a convenient shock structure for the distribution of exposures and payoff

news across agents—and uses it to illustrate all the main results of our paper. Section 6 gen-

eralizes from the benchmark economy in different directions. One extension keeps the shock

structure but broadens the utility specification to the linear risk tolerance class, without changes

in the results. Another looks at more general utility functions, but then specializes the shock

structure. A third extension, finally, looks at the exponential-utility, normal-shocks case typ-

ically studied in finance applications; for this case, somewhat more detailed characterization

can be obtained than in the case where wealth effects are present. Section 7 concludes.

2 Related literature

Relative to the literature, we make several, though related, contributions. We provide a general

definition of exposure that helps predict equilibrium beliefs and trading behavior given the dis-

tribution of initial exposures. We also show how shocks to aggregate exposure become relatively

more important for price volatility in the presence of private information. We establish these

results for economies where agents have (possibly heterogeneous) preferences in the linear risk

tolerance (LRT) class that contains both CRRA and exponential utility. We further provide a

numerically tractable setting with log utility, thus allowing for decreasing absolute risk aversion

and wealth effects. Finally, the application of our model to the crisis episode offers an interpre-

tation of events that is not based on financial frictions or the irrationality of investors: It only

requires an aggregate exposure shock and its imperfect revelation through market prices.

The fact that aggregate exposure shocks can matter for price volatility is familiar from

the literature on asset pricing in the tradition of Lucas. In a representative agent model, any

shock to marginal utility that does not affect dividends will move around the exposure of the

representative agent to the stock market. Examples include shocks to housing and human

5



capital, or exogenous changes in risk aversion. Heterogeneous-agent models with incomplete

markets typically allow for changes in the idiosyncratic volatility of labor income, which also

changes the initial exposure of agents to stocks. In exponential-normal models, Campbell et al.

(1993), Campbell and Kyle (1991), and Spiegel (1998) have examined the role of random supply

of assets for volatility. In all of these setups, aggregate exposure shocks have been found to be

quantitatively important to generate excess volatility of prices. Our results say that they matter

for prices in the presence of private information, and also generate interesting comovement of

prices and volume.

There is a large literature on rational expectations equilibria (REE) in economies with

private information, following the seminal work of Radner (1967) and Lucas (1972). The fact

that equilibrium involves inference from prices has made it difficult to provide general proofs

of the existence of partially revealing equilibria (see Allen and Jordan (1998) for a survey of

early work and Pietra and Siconolfi (2008) for some recent results).4 DeMarzo and Skiadas

(1998) have characterized existence and asset pricing properties in a class of “quasi-complete”

economies with LRT preferences that subsumes many models considered earlier. Our model

economies are not quasi-complete because of the presence of aggregate exposure shocks.

For asset pricing applications, a major workhorse has been the framework with exponential

utility and normally distributed shocks developed by Grossman (1976), Hellwig (1980), and

Admati (1985). In these models, the presence of nonrevealing equilibria is due to a random

supply of assets sold by “noise traders.”A net sale by noise traders can be viewed as a shock

that increases the equilibrium exposure of the rational agents. It thus generates low prices and

high risk premia together with high volume. Moreover, the presence of private signals (about

payoff) increases volume: Equilibrium disagreement of rational investors leads to extra volume

from speculative trades while the response of volume to noise trades is independent of the

information structure. In contrast, a key feature of our model is that the presence of private

signals (about both payoff and aggregate exposure) can lead to lower volume.

Diamond and Verrecchia (1981) consider an exponential/normal setup where agents re-

ceive stochastic endowments from which they learn about the aggregate endowment. Our

exponential-normal example in Section 6.3 is a version of their model, but with a continuum

of traders and “news shocks,”that is, the pooled information of all agents does not reveal asset

4Several authors have studied the role of exogenously given heterogenous beliefs on asset prices (see for
example Calvet et al., 2001, Jouini and Napp, 2007, Jouini and Napp, 2006, Detemple and Murthy, 1994). In
a rational expectations equilibrium, the heterogeneity of beliefs is endogenous.
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payoffs, but only serves as an imperfect signal (or ”news”) about those payoffs. Similar setups

have been used by Ganguli and Yang (2009) and Manzano and Vives (2011) to investigate

how multiplicity of equilibria depends on information acquisition incentives and the presence

of public signals, respectively.

Several papers have worked out nonrevealing rational expectations equilibria outside of the

exponential/normal framework.5 At the most general level, the effects of exposure on prices

and trading we emphasize here do not require nonlinearities—as we show, they arise also in

the exponential/normal setting. At the same time, we find the case where exposure shifts

reflect wealth effects—due to revaluation of illiquid assets for example—appealing for further

applications.

Our paper also adds to a recent literature that broadens the dimensions of uncertainty

beyond private signals and private endowments.6 Indeed, our general definition of exposure

clarifies that what matters for belief formation and trading is not just investors’ signals and

initial positions—the latter represented, for example, by endowments in an exponential/normal

setting—but also their preferences. For example, in our LRT economies, uncertainty about

the share of agents with high curvature in the utility function works in much the same way

as uncertainty about the correlation of the initial position with the tradable risk factor—

both represent aggregate exposure risk. Heterogeneity in objective functions is of interest, for

example, when thinking about price formation in markets with institutional traders, where it

can capture differences in financing constraints.

A related set of papers studies price volatility in economies where conditions on type dis-

tributions, preferences and trading constraints generate an active extensive margin. The asset

price is then determined by a particular marginal investor type, namely a trader who is indif-

ferent between buying and not buying the asset, and excess volatility can emerge if the payoff

expectation of this marginal investor is different from (and changes more with shocks than)

that of an outside observer. Prominent examples with exogenous beliefs are Scheinkman and

Xiong, 2003, Hong and Stein, 2003), Fostel and Geanakoplos (2008) and Simsek (2013). Albagli

5Ausubel (1990) considers a two good example with asymmetric information about preferences. Barlevy and
Veronesi (2000, 2003) consider risk neutral investors who face trading constraints; they point out in particular
the possibility of multiple equilibria. Breon-Drish (2013) analytically works out equilibria with non-normal
payoffs and CARA utility; he shows how the resulting nonlinearities in the price function help understand asset
pricing anomalies. Peress (2004) considers the interaction of wealth effects in portfolio choice and information
acquisition in a noisy rational expectations model.

6For example, Easley et al. (2012) study uncertainty about others’ risk aversion. Uncertainty about others’
information set is considered by Gao et al. (2013) in a static setup and by Banerjee and Green (2014) in a
dynamic model with learning.
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et al. (2011) study a trading game with noise traders and private information, in which prices

are characterized by the (endogenous) information of a marginal investor investor. We follow

instead the older REE literature and study competitive equilibria with risk averse agents and

no trading constraints, so that standard Euler equations hold for all traders—in other words,

every investor is marginal. Excess volatility nevertheless emerges because payoff expectations

and equilibrium exposures for all investors adjust to support a price that is different from (and

changes more with aggregate exposure shocks than) what an outside observer would expect.7

The crisis has also renewed interest in markets with asymmetric information, that is, settings

where some agents have better information than others in equilibrium. For example, in Gorton

and Ordoñez (2012), lenders can choose to acquire private information about collateral posted

by borrowers, thus making debt an “information sensitive” security. Guerrieri and Shimer

(2014) study dynamic trading in markets where sellers know more than buyers about asset

quality; they investigate when relative prices and relative volume (and hence the speed of

trading) across qualities helps buyers infer quality. Vayanos and Wang (2012) compare the role

of information asymmetry and imperfect competition for returns. Our perspective is different

from these papers in that our setup features differential, rather than asymmetric, information.

In particular, our interpretation of the crisis says that many institutions are similarly uncertain

about the nature of aggregate shocks, but none has information of superior quality. Our point

here is not that trading constraints or information asymmetries are not relevant; we simply

emphasize that crisis-like episodes do not necessarily require those features.

Recent work has also started to examine the quantitative implications of dynamic expo-

nential/normal models with asymmetric information for asset pricing and trading. Biais et al.

(2007) show that the interaction of informed and uninformed agents can explain the superior

performance of mean-variance efficient portfolio strategies used by uninformed investors rel-

ative to the market. Building on the dynamic exponential-normal model proposed by Wang

(1994), Albuquerque et al. (2007) show that modeling trades between informed and uninformed

traders in international equity markets help understand the joint distribution of cross border

equity flows and stock returns. Nimark (2011, 2012) proposed a new computational approach

for dynamic linear rational expectations models and applies it to the term structure of interest

7In fact, as shown in Section 5.3, the price is different from what is expected by an outside observer who
knows preferences and aggregate exposure. We thus obtain excess volatility of prices not only relative to expected
payoff, but also relative to risk-adjusted expected payoff, where the risk adjustment uses the correct preferences
and endowments, but assumes symmetric information. In other words, private information can explain not just
failure of a risk neutral pricing model, but also of a representative agent model.
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rates. The computational approach in this paper may be useful for further quantitative work

in the future.

3 Model

We consider a two period exchange economy. In the first period, investors trade claims on

an aggregate risk factor that is realized at date 2 when assets pay off. For example, financial

institutions trade mortgage backed securities with payoffs that depend on the U.S. housing

market. At date 1, there is an aggregate shock that investors learn privately: The shock affects

investors’ endowments, preferences, and information sets, all of which are private information.

For example, institutions learn about housing market conditions through market research and

their interaction with clients. As they observe a deterioration of market conditions, they reassess

not only the likelihood of an overall housing bust, but also the distribution of losses they—and

other institutions like them—should expect to take in such a bust.

Formally, there are two dates and a continuum of investors of measure 1. At date 1,

investors trade assets that pay off at date 2. Fix a probability space (X,Ξ,Pr) on which all

random variables are defined. The aggregate risk factor is a random variable τ with var (τ) > 0.

It is tradable, that is, investors can trade an asset with payoff τ at date 1. Investors can also

trade a riskless asset that pays off one for sure. Investors thus choose payoffs from the set

C = {c : there are ac, bc ∈ R s.t. c = ac + bcτ} (1)

Any payoff c is identified with a portfolio of ac units of the riskless asset and bc claims on the

risk factor τ .8 Asset prices are represented by a linear function on C that assigns a value to

every payoff. We normalize the price of the riskless payoff to one. The value of a payoff c can

then be written as ac + bcp, where the parameter p ∈ ℜ is the price of a claim on τ . The exact

asset structure is not important, as long as there are enough assets to generate any payoff in

C.

Investor heterogeneity

To allow for investor heterogeneity, we introduce a set Θ of investor types. For a generic

investor, his type θ is a random variable valued in Θ that determines his endowment, preferences

8We restrict attention to environments in which i) consumption plans C span the space generated by risk
factor payoffs, or ii) the optimal consumption in the space spanned by risk factor payoffs belongs to C.
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and information. The investor’s endowment is a random variable ω (θ) ∈ C. Endowments are

thus tradable, that is, they can be thought of as initial portfolios of tradable assets. For

example, if τ is the housing market, then ω can be viewed as an initial portfolio of mortgage

bonds; the coefficient bω(θ) says how sensitive the portfolio is to a housing boom or bust.

Investor objectives are described by a utility function u (c, θ) that ranks payoffs realized at

date 2. We assume that u is continuously differentiable, strictly increasing and strictly concave

in c. Here curvature in the utility function may capture risk aversion, or it may stand in for

factors that determine the risk tolerance of institutions such as financing constraints or agency

problems within the firm. It can also reflect the regulatory environment—for example, we would

expect institutions that anticipate more generous bailout payments to act as if they are less

risk averse.

Finally, an investor’s type θ summarizes the investor’s information from any source other

than market prices. Two types of information are relevant here. First, there is information

about future payoffs, that is, the risk factor τ . To accommodate payoff information, we allow an

investors’ type θ to be correlated with τ under the probability Pr. Second, there is information

about others’ positions and attitude toward risk. To accommodate information about others, we

allow types to be correlated across agents. Importantly, we allow investors to learn information

about others that is not directly payoff relevant.

To illustrate, consider again the example of financial institutions trading mortgage bonds.

Individual institutions collect information by engaging in market research as well as talking

to clients. Through this process, they arrive at—possibly distinct—views on the future of the

housing market. In other words, they learn about a key aggregate risk factor that will affect

their portfolio in the future. At the same time, they learn about how sensitive their portfolio is

to the housing market. For example, they might conclude that default rates will be higher than

expected, and that therefore portfolio payoff will covary more with house prices. Moreover, since

institutions have some knowledge of others’ business practices, they may then infer something

about others’ likely sensitivity to the housing market also. This information is not directly

helpful in order to forecast what happens to housing. However, it is useful to understand how

the economy works and in particular what forces shape the currently observed bond prices.

We impose throughout that investors have rational expectations: Everybody knows the joint

distribution of all random variables under Pr. Investors can thus disagree only if their types

θ convey different information. Individual information sets at date 1 are denoted I (θ); they
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contain an investor’s own type θ as well as asset prices. Prices thus not only enter the budget

constraint, but also serve as a signal. Investors use Bayes rule to form a subjective belief given

the information I (θ). Individual preferences over consumption plans c are therefore represented

by

U (c; θ) = E [u (c; θ) |I (θ)] (2)

The agent’s problem

An individual investor chooses a consumption plan c ∈ C to maximize expected utility

U (c; θ) from (2) subject to a budget constraint. Given our assumptions on the structure of

C, we can write the maximization problem in terms of coefficients ac and bc that determine a

consumption plan. An investor thus solves

max
ac,bc

E [u (ac + bcτ ; θ) |I (θ)]

s.t. ac + bcp = aω(θ) + bω(θ)p (3)

Taking first-order conditions with respect to ac and bc and eliminating the Lagrange multi-

plier on the budget constraint delivers

p = E

[

τ
u′ (c; θ)

E [u′ (c; θ) |I (θ)]
|I (θ)

]

= E [τ |I (θ)]− cov

(

τ,−
u′ (c; θ)

E [u′ (c; θ) |I (θ)]
|I (θ)

)

. (4)

This first order condition is a standard asset pricing equation mentioned in the introduction:

The price of a risk factor equals the risk adjusted discounted expected payoff, where the stochas-

tic discount factor is u′ (c) /E [u′ (c)].9 Together with the budget constraint, it determines the

coefficients ac and bc that describe the optimal consumption plan. We denote the optimal plan

of a type θ agent by c∗ (θ; p).

The correlation of types

To model the correlation of types, we introduce an aggregate shock that affects the cross

section of investors. Formally, before markets open at date 1, nature draws a distribution

µ ∈ ∆(Θ), where ∆ (Θ) is the set of probability distributions over Θ. Types are then iid

conditional on µ, so µ (θ) is both the probability that an individual investor is of type θ and the

fraction of investors of type θ in the population. When investors trade assets at date 1, they

know their own type, but not the distribution µ. As a result, the aggregate shock µ is learned

9Here, because there is only consumption in one period, the risk-free rate does not appear.
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privately by investors through signals, rather than being learned via a public announcement,

say.

As discussed above, we would like a type to reflect both private information about payoffs

(the risk factor τ) and private information about others that is not payoff relevant. A simple

way to accommodate both types of information is to work with distributions that can be

represented by exactly two parameters. The first parameter summarizes the payoff relevant

information contained in µ. We assume that there exists a one-dimensional statistic δ (µ) that

is sufficient for forecasting the risk factor τ given µ. If agents know the distribution µ, then

δ (µ) is all they care about for the purpose of predicting payoffs. We thus refer to δ as the

“aggregate payoff news” available in the economy as of date 1.

Our second key parameter, ε, summarizes all additional information about others’ endow-

ments and preferences that is contained in µ. We assume that ε cannot be written as a de-

terministic function of τ . We want some independent variation in ε to capture the idea that

investors learn information about others that is not directly payoff relevant. At the same time,

we do not require that ε is independent of δ or τ . What matters is that ε is not needed to

forecast τ if δ is known. To sum up, we consider joint distributions of the aggregate shocks µ

and τ as well as the individual types θ such that the pair (δ(µ), ε (µ)) is a sufficient statistic

for forecasting an individual’s type θ given µ. All investors know the joint distribution of these

variables under Pr.

Equilibrium

Since investor types are iid conditional on µ, aggregate demand for date 2 contingent claims,

and hence equilibrium prices, depend only on the distribution of types µ. A rational expectations

equilibrium (REE) price function P : ∆ (Θ) → ℜ clears the market: for every µ,

∑

θ∈Θ

µ (θ) c∗ (θ, P (µ)) =
∑

µ (θ)ω (θ) =: Ω (µ) .

where c∗ (θ, P (µ)) is the optimal solution to (3) given the price realization P (µ). Importantly,

when agents form their subjective belief via Bayes rule to compute c∗, they use their knowledge

of the equilibrium price function P .

Since (δ(µ), ε (µ)) is sufficient for forecasting θ given µ, the distribution of agents’ individual

demands depends only on δ and ε. The same is true for the aggregate excess demand at some

price p. It follows that the equilibrium price can also be represented as a function P̃ of δ and

ε. Below we will thus sometimes write P (µ) = P̃ (δ (µ) , ε (µ)). This perspective illustrates
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why a fully informative equilibrium—in which agents’ know the distribution of payoffs τ given

µ—need not exist in our model. A fully informative equilibrium requires that agents can infer

δ (µ) from observing only the price and their own type. However, the unobservable distribution

µ not only determines δ (µ) but also the second parameter ε (µ), while there is only one price

signal P̃ . In general, inferring δ from P need not be possible.

4 Exposure and the revelation of information

An important concept for characterizing trading and prices is investors’ exposure to the aggre-

gate risk factor τ . We now describe a measure of exposure that can be applied to individual

investors as well as to the economy as a whole. We then describe properties of equilibrium in

terms of investors sharing exposure.

Individual exposure

Intuitively, an investor who is more exposed to a risk factor would pay more to reduce

factor risk. We thus measure exposure of an investor holding portfolio c to the risk factor τ

by the premium this investor is willing to pay to avoid a marginal increase in τ -risk. Consider

increasing τ -risk by ∆ units of variance. For an investor with portfolio c, information set I and

utility U defined on the set of random payoffs C, the risk premium ρ (∆; c, I, U) per unit of

variance is implicitly defined by

U (c−∆ρ (∆; c, I, U)) = U

(

c+∆
τ − E [τ |I]

var (τ |I)

)

Here the left-hand side is utility at the portfolio c less the sure payment of the risk premium,

and the right-hand side is utility at c plus an increase in risk. The increase in risk is described

by a mean zero shock that is perfectly correlated with τ and scaled by ∆ units of variance.

Measuring exposure as a risk premium is reminiscent of familiar measures of risk aversion. The

key difference is that we are not considering the premium for an increase in risk at certainty,

which is always positive for a risk-averse investor. Instead, we are interested in premia for an

increase in risk at a portfolio c that is already risky. Such premia can be positive or negative

even though the investor is risk-averse, depending on how the portfolio c comoves with τ .

We now define exposure as the premium for a marginal change in risk at the point c =

ac + bcτ . The limit of ρ as ∆ becomes small is computed by performing a Taylor expansion
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around c and dividing by ∆. Terms of order two and higher then vanish and we are left with

e (c, U) := lim
∆→0

ρ (∆; c, I, U) =
1

var (τ |I)

(

E [τ |I]−
dU/dbc
dU/dac

)

, (5)

where all derivatives are evaluated at the point c. Exposure can be positive or negative depend-

ing on whether the investor’s expectation of τ is larger or smaller than the marginal rate of

substitution of τ -risk for certain consumption. It is a subjective concept—all moments depend

on the investor’s subjective distribution given the information set I.

If U has an expected utility representation U (c) = E [u (c) |I] for some information set I

and felicity u, we can solve out the derivatives and simplify to obtain

e (c, U, I) =
cov
(

τ,− u′(c)
E[u′(c)|I]

|I
)

var (τ |I)
. (6)

Exposure thus depends not only on the subjective distribution of the portfolio c and the risk

factor τ , but also on the investor’s utility function. On the one hand, the comovement of τ and

c determines the sign of e. Exposure is positive if and only if consumption covaries positively

with τ . Exposure is zero if consumption is independent of τ . On the other hand, for a given

distribution, exposure is lower if the investor is more risk tolerant—it is zero if the investor is

risk neutral.

To continue our example of financial institutions trading bonds, a bank could have higher

exposure to the housing market for one of two reasons. First, its bond portfolio could covary

more strongly with the housing market, perhaps because it holds more subprime bonds with

higher default rates. Second, its utility function could display higher risk aversion, for example

because it is smaller and thus expects not to be covered by a too-big-to-fail policy. At the

same time, size as such need not increase exposure and will leave it unaffected if utility is

homothetic. Moreover, exposure is distinct from risk: An increase in the volatility of τ need

not change exposure and will leave it unaffected for example if marginal utility is linear.

Initial exposure and trading to optimal exposure under expected utility

Our model describes how heterogenous investors trade to change their exposure in response

to shocks. An important benchmark is an investor’s initial exposure, defined as exposure at the

endowment ω and in the absence of any signal about τ . In other words, an investor is told the

coefficients aω and bω that determine his initial portfolio, and then uses unconditional moments

in (6) to compute

e (ω;U,∅) =
cov
(

τ,− u′(aω+bωτ)
E[u′(aω+bωτ)]

)

var (τ)
.
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For example, an institution with high initial exposure to the housing market may be one with

a bond portfolio that on average (across shocks µ) will comove a lot with housing, perhaps

because the bank holds a lot of subprime bonds.

Consider now how an investor reacts to learning his type θ as well as the price p. Given our

measure of individual exposure, we can rewrite the investor first order condition as

p = E [τ |I (θ)]− e (c∗ (θ; p) ;U (.; θ) , I (θ)) var (τ |I (θ)) (7)

Intuitively, an agent who is more optimistic about τ (has a higher E [τ |I (θ)]) and more confident

about τ (lower var (τ)) chooses to be more exposed to τ . Equilibrium gives rise to a distribution

of beliefs and exposures. In particular, in an equilibrium in which all investors have the same

information (and hence the same beliefs about E(τ) and var(τ)), they equate their exposures

to the risk factor τ in equilibrium. Indeed if the mean and variance do not depend on I (θ),

then neither can exposure. More generally, more optimistic and confident agents take on more

τ -risk than other agents. For example, more optimistic and confident institutions tilt their

bond portfolios more toward subprime.10

Aggregate exposure and the information revealed by prices

Consider equilibria in which information aggregation by markets “works well.”We say that

an equilibrium is fully informative if the price is a sufficient statistic for forecasting the risk

factor τ given µ, the pooled information available at date 1. In other words, the price conveys

the sufficient statistic δ (µ). Investors then have common beliefs about τ in equilibrium: They

all observe the price, and there is no value in looking at anything else. The equilibrium is the

same as if the state µ were public information.

Common beliefs together with the fact that all risk is tradable implies the existence of a

representative agent whose first order conditions can be used to price assets. Indeed, let λ (θ, µ)

denote the Lagrange multiplier on type θ’s budget constraint in the aggregate state µ, which

is PFI-measurable. We define the representative agent’s utility on the consumption set C by

choosing PFI-measurable consumption plans (a, b) to solve

V (Ω;µ) := max
a,b

E
[
λ (θ, µ)−1 u (a (θ) + b (θ) τ ; θ)

]

s.t. aΩ + bΩτ = E [a (θ)] + E [b (θ)] τ

10Trades that take investors from initial exposure to equilibrium exposure thus reflect two forces: updating
of beliefs and equating exposure for the same beliefs.
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Aggregate exposure can be defined analogously to individual exposure (5): It represents the

risk premium that the representative agent would pay to avoid a marginal increase in risk at

the aggregate endowment Ω. This works even if the representative agent’s utility function V

does not have an expected utility representation.

Using the representative agent’s first order condition together with the general formula for

exposure in (5), the price of a claim on the risk factor τ can be written as in (7), but now using

the aggregate endowment and the information contained in µ:

PFI (µ) =
dV/dbΩ
dV/daΩ

= E [τ |µ]− e (Ω (µ) ;V (.;µ) , {µ}) var (τ |µ) (8)

On the second line, the first term is again simply the expected present value of payoffs (since

the riskless interest rate does not appear when there is consumption at one date only). The

second term is the risk premium written as the variance of τ multiplied by aggregate exposure

to τ . Risk matters for prices if and only if the representative agent is exposed to it. Other

things equal, the price of a risk factor is lower the more the representative agent is exposed to

that factor. This could be because the representative agent is more risk averse, or because the

aggregate endowment comoves more with the risk factor.

A key property of fully informative equilibria is that aggregate exposure is common knowl-

edge. Indeed, if agents know the conditional moments of τ given µ, from their own signals θ

as well as the price, then they must also know aggregate exposure. Markets thus aggregate

information only if the distribution of types is sufficiently simple in the sense that agents know

or learn aggregate exposure. For example, a fully informative equilibrium exists if aggregate

exposure is independent of the parameter ε (µ), that is, it is either constant or perfectly cor-

related with δ. More generally, shocks to the distribution ε that move aggregate exposure

will prevent equilibrium prices from revealing the relevant information. The rest of the paper

considers properties of prices and trading in that case.

5 Uncertain exposure and asset pricing

In this section we work through a special case of the model aimed at deriving and illustrating,

by means of simple graphs, our main results. The special case has two features. First, all
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investors have log utility: while this abstracts from heterogeneity in preferences, it does allow

for wealth effects on portfolio choice and therefore effects of the wealth distribution on asset

prices in an equilibrium with private information. Second, the risk factor τ takes values in the

set {0, 1}. Its price p is therefore the price of an Arrow security that pays off when τ = 1.

Denote the prior probability of the event τ = 1 by π. Evaluating (6) at the endowment

yields initial exposure

e (ω;U,∅) =
1

aω (θ) /bω (θ) + 1− π
(9)

The ranking of investors by initial exposure is thus independent of the prior probability and

depends only on the ratio of endowments in the two states, given by 1 + bω(θ)
aω(θ)

.

The distribution of types is set up so agents differ both by initial exposure and by information

about τ . Initial exposure depends on the endowment. There are two different endowment

profiles, one with high exposure ē and one with low exposure e < ē. The parameter ε represents

the share of investors with high initial exposure; it takes a high value εh with probability η

or a low value εl < εh with probability 1 − η. This setup implies that an investors’ own

initial exposure serves as a signal about the overall distribution of exposures. In particular,

more exposed investors will believe that there are relatively more investors who also have high

exposure.

The parameter δ represents the probability Pr (τ = 1|µ), which here summarizes the entire

conditional distribution of τ given the pooled information µ. It is drawn from a probability

distribution f (δ|ε). Initial exposures may thus be correlated with the aggregate news δ and

thereby with the risk factor τ . News is dispersed in the economy in the form of private signals.

In particular, an investor of type θ receives a private signal s (θ) ∈ {s1, s0} about the event

τ = 1. The signals s (θ) are iid across investors and independent of initial exposure. The

probability of receiving a signal s1 is equal to δ. The signal realization s1 is indicative of the

risk factor realization τ = 1—we will say that s1 represents a ”good” signal about τ .

The aggregate endowment Ω (µ) does not depend on the news δ; we therefore directly write

Ω (ε). With identical log utilities, the representative agent utility V is also expected utility

with log felicity. Aggregate exposure thus also takes the form (9):

e (Ω (ε) ;V, µ) =
1

aΩ(ε)/bΩ(ε) + 1− δ
,

Conditionally on the aggregate news δ, the aggregate exposure is strictly increasing ε. An

increase in ε thus corresponds to an increase in aggregate exposure.
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A numerical example

To illustrate the main points of this section graphically, we fix a numerical example. It

assumes that δ is drawn from a uniform distribution with support [0, 1], independently of ε,

and η = 0.5. We also set b(θ) = 1 for all investors. High exposure investors have b (θ) = 1, low

exposure investors have b (θ) = 0, and a (θ) = 1 for all types.

Agents with high initial exposure receive an endowment of ω1(θ) that is twice as large as

the one received by agents with low exposure. The fraction of agents with high initial exposure

either εh = 0.9 or εl = 0.1. As will be shown below, the model reduces to a system of

nonlinear differential equations and we solve it numerically using Chebychev collocation. The

code approximate the functions P̃ (δ; εl) and P̃ (δ; εh) as the weighted sum of fifteen Chebychev

polynomials. The equilibrium is defined by the solution of a fixed point problem.

Nonexistence of fully informative equilibria

In a fully informative equilibrium, investors’ equilibrium belief about τ is given by δ. It

is straightforward in this example, by using the consumer’s first-order conditions, budget, and

market clearing, to show that the equilibrium price must satisfy

P̃FI (δ, ε)

1− P̃FI (δ, ε)
=

δ

1− δ

(

1 +
bΩ(ε)

aΩ(ε)

)

. (10)

Figure 1 shows the equilibrium price function for the numerical example. The horizontal

axis measures the news δ. Any equilibrium is described by two curves, the price functions given

low and high aggregate exposure, P̃
(
., εl
)
and P̃

(
., εh

)
, respectively.
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Figure 1: Prices under full information

Clearly, the full-information case has a zero price when δ = 0 and a price of 1 for δ = 1, it

is increasing in δ, it is decreasing in ε, and it is therefore nonlinear in δ. It follows that a fully
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informative equilibrium cannot not exist when information is private and aggregate exposure

depends on ε. Indeed, if there was such an equilibrium, agents would have to be able to infer δ

from the price. However, for any given price, they cannot tell whether the price was generated

by good news and low exposure, or by bad news and high exposure.

In equation (10), the relative price of the two contingent claims is conveniently expressed as

containing two factors, one that depends only on δ and one that depends only on ε. It may not

be apparent how this equation relates to the expression in the previous section, equation (8),

where the price of the risk factor τ was written, also based on a first-order condition, as the

expected value of τ less a term containing exposure times the variance of τ . It is, however, easy

to re-express (10) that way.11 An advantage of the formulation in (10) is that the expected

value of the risk factor τ and its variance—which both only depend only on δ, the former

equalling δ and the latter δ(1 − δ) in our example economy—appear jointly in the form of the

ratio δ/(1− δ).

Equilibrium with private information

Consider now equilibria that are not fully informative. If investors do not learn all the

relevant information δ from prices, they base their forecast in part on their private signals. As

a result, they disagree in equilibrium. Let δ̂ (θ, p) denote type θ’s subjective probability of the

event τ = 1 if the equilibrium price is p. Computation of δ̂ is by Bayes’ rule, taking into account

the investor’s knowledge of the price function P̃ (δ, ε) as well as the joint distribution of the

state (δ, ε) and the private signals. Combining first order and market clearing conditions, we

find that the equilibrium price must satisfy

P̃ (δ, ε)

1− P̃ (δ, ε)
=

δ̄0 (δ, ε)

1− δ̄1 (δ, ε)

(

1 +
bΩ(ε)

aΩ(ε)

)

, (11)

where δ̄τ is an average of individual agents’ beliefs δ̂ (θ, p) weighted by agents’ endowments

conditional on the realization of τ , that is,

δ̄τ (δ, ε) =
∑

θ

ωτ (θ)

Ωτ (ε)
δ̂
(

θ, P̃ (δ, ε) (δ, ε)
)

µ (θ; δ, ε) .

11To see how, notice that the equivalent to equation (4) in the present setup is

P̃FI (δ, ε) = δ − δ(1− δ)
1

1− δ +
aΩ(ε)

bΩ(ε)

= δ
︸︷︷︸

E[τ |µ]

− δ(1− δ)
︸ ︷︷ ︸

var(τ |µ)

1

1− δ +
aΩ(ε)

bΩ(ε)
︸ ︷︷ ︸

e(Ω,u,µ)

.
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The representation (11) is similar to that in the full information case. In particular, there is

the same direct negative effect of aggregate exposure on price. If all agents agree on δ, we are

thus back to (10). Here, though, because beliefs are heterogeneous, what matters in the price

determination are two wealth-weighted averages of beliefs on δ. Now there is consequently a

key difference in how the price depends on news and aggregate exposure. On the one hand,

the “true” unobservable news δ changes the price only to the extent that it shifts the mean

of the (now nondegenerate) distribution of individual beliefs; actual aggregate exposure is not

influenced by this news. On the other hand, aggregate exposure affects the distribution of

beliefs and therefore affects prices also through a second, indirect channel. Finally, the beliefs δ̂

are described explicitly as a function of the price function so that it is clear how the equilibrium

equation is a nontrivial functional equation.

The price function for the numerical example is shown as a pair of blue curves in Figure 2,

where the full-information price function is also plotted.
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Figure 2: Prices under full and asymmetric information

The shape of the asymmetric-information price is overall similar: It is increasing in news δ

and decreasing in exposure ε. In fact, holding fixed news, the effect of exposure on prices is

relatively stronger in the economy with private information. To understand these effects, we

now turn to analyzing inference from prices in equilibrium.

Inference from prices and private information

When investors look at the price, they think about whether it is driven by news or by

aggregate exposure. For example, consider an investor who observes the price p0 in the stylized

Figure 3.
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Figure 3: Signal extraction when agents observe a price p

The investor knows that only two values of δ could have been realized. Let δl (p0) denote

the value of aggregate news δ consistent with a price p0 and low aggregate exposure. Similarly,

let δh (p0) denote the value of δ consistent with a price p and high aggregate exposure. Since

investors do not observe the actual distribution of individual exposures, they cannot distinguish

which of the values (δl (p0), δ
h (p0)) corresponds to the actual realization of δ.

Imperfect inference from prices implies that investor beliefs respond less to the true aggregate

news. Indeed, Bayes’ rule implies that each investor’s belief consists of a weighted sum of δl (p0)

and δh (p0)). When aggregate exposure is high (δ = δh (p0)), beliefs are then below the true δ

realization as investors assign some weight to the possibility that δ = δl (p0). How an individual

investor type weighs the role of news and exposure now depends on his private information,

including his initial exposure.

A key implication is that investors with higher initial exposure are more optimistic in equi-

librium. Indeed, for a given signal s, a high-exposure agent believes that it is more likely that

the fraction of high-exposure agents is high rather than low, so he assigns more weight to δh (p0)

than a low-exposure agent. Similarly, for a given individual exposure, an agent with a good

signal s believes that it is more likely that the highest δi(p0) was realized.

Given the four types, four possible beliefs about τ emerge in equilibrium, as shown for the

numerical example in Figure 4. The beliefs of high-exposure types lie above the beliefs of low-
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exposure types. Similarly, the beliefs of agents with signals favorable to state τ = 1 lie above

the beliefs of agents with signals favorable to τ = 0.
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Figure 4: Equilibrium beliefs

The ranking of beliefs as well as the response of prices to aggregate exposure does not

depends on the details of the numerical example. We summarize the discussion above in the

following proposition, proved in the appendix.12 To easily label the different types of agents, it

is useful to write the type directly as θ = (s, e) .

Proposition 5.1. Consider an equilibrium with a price function P̃ that is continuous and

increasing in δ. Then

1. Individual beliefs are ranked by

(a) δ̂ (s, ē, p) > δ̂ (s, e, p) (for a given signal, agents with higher exposure to the risk factor

τ believe that τ is more likely to be high)

12Formally, Bayesian updating yields that the posterior probability of the event τ = 1 for an agent of type θ

is
δ̂ (θ, p) = η̂ (θ, p) δh (p) + (1− η̂ (θ, p)) δl (p) .

The term η̂ (θ, p) denotes the posterior probability that a type θ agent observing a price p assigns to a
distribution of types with high aggregate exposure µ = µh (.|p), namely

η̂ (θ, p) =
ηpµh (θ; p)

ηpµh (θ; p) + (1− ηp)µl (θ; p)
,

where ηp denotes the probability that µ = µh (.|p) based on the price alone, namely

ηp =
η
(
δh
)′
(p) f

(
δh (p) ; εh

)

η (δh)
′
(p) f (δh (p) ; εh) + (1− η) (δl)

′
(p) f (δl (p) ; εl)

. (12)

The derivatives of the belief functions appear here, and since these derivatives are not constant due to the
nonlinearity of the price function, the model solution amounts to the solution of a differential equation system.
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(b) δ̂ (s1, e, p) > δ̂ (s0, e, p) (for given exposure, agents with a better signal about the risk

factor τ believe that τ is more likely to be high).

2. δh (p) > δl (p) (holding fixed the price, aggregate news about the risk factor τ is better

when more agents have high exposure to τ).

Part 1.a of the proposition says that agents with higher exposure to the risk factor τ are

more optimistic about the factor, that is, they believe that τ is more likely to take on the

high value τ = 1. Part 1.b simply says that, in a nonrevealing equilibrium, agents’ beliefs

also respond to their signals. This is because the signals add information over and above that

contained in the price.

Part 2 of the proposition says that the news about τ = 1 given the price and the number

of agents with high initial exposure ε must be better if ε is higher. Part 2 also means that the

price function P̃ is decreasing in ε. As in the full information case, higher aggregate exposure

thus lowers prices.

Private information and price volatility

We have seen above how the presence of private information not only changes investors’

inference of aggregate shocks from prices. We now consider how this change in inference feeds

back to the effect of shocks on prices. The relevant comparison here is how the full information

price function compares with the price function under private information. As Figure 2 illus-

trated for our numerical example, prices depend relatively more on aggregate exposure under

private information. Formally, we have

Proposition 5.2. Consider a nonrevealing equilibrium with price function P̃ that is continuous

and strictly increasing in δ. The equilibrium price depends more strongly on aggregate exposure

than in the full information case: for every δ ∈ (0, 1) ,

P̃
(
δ, εl
)
> P̃FI

(
δ, εl
)
> P̃FI

(
δ, εh

)
> P̃

(
δ, εh

)
.

The intuition for this result can be seen in (11). The direct effect of aggregate exposure

on price is the same regardless of the information structure. What is special under private

information is that average beliefs also depend on aggregate exposure. In particular, when

aggregate exposure is high, and prices are therefore low, then investors put some weight on the
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possibility that the price is low because of bad news. The average agent is thus more pessimistic

than in the full information economy, which explains why prices are lower.

Trading volume

The ranking of beliefs translates directly into differences in trading behavior across agents.

Indeed, compared with the full information case, equilibrium disagreement has two effects on

trading volume that work in opposite directions. On the one hand, agents with the same

endowments and preferences will choose different portfolios: Agents speculate based on their

private signals. This effect tends to increase trading volume.

On the other hand, agents with different initial exposures to τ will not equate their exposures

as they would in a full information equilibrium. Instead, precisely those agents who start with

higher exposure end up more optimistic and hold on to their exposure. They do not receive as

much insurance from agents with low exposure, because the latter are pessimistic about claims

on τ . This effect tends to lower trading volume relative to the full information case.

Figure 5 shows the effect of information on trading volume in the numerical example. Volume

is measured as the market value of trades in the contingent claim paying out in the good

state, as a function of price averaged across the two exposure outcomes.13 In the asymmetric-

information economy, the correlation between individual exposure and beliefs implies that there

is less trading and, therefore, less sharing of exposure.
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Figure 5: Trading volume

13Formally, the graph plots the aggregate trading value of claims paying on τ = 1, i.e.,
∑

j=l,h Pr(εj)
∑

θ µ(θ; ε
j , p) p|c1 (θ; p)−ω1(θ)|, where µ(θ; ε

j , p) denotes the distribution of types that generates

a price p when aggregate exposure takes the value εj , and c1 (θ; p) denotes the optimal consumption in state
τ = 1 of type θ when the price is p.
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5.1 Excess volatility of asset prices

We have seen that shocks to aggregate exposure lower prices. We now ask whether there is a

sense in which prices will appear “excessively low” in response to exposure shocks. One simple

way to express this is to ask whether subsequent price changes are predictably positive, relative

to a benchmark present value model. In other words, we ask whether excess returns on the risk

factor are predictable. The excess return on a contingent claim that pays one unit when τ = τ1

and zero otherwise is re = τ − p.

Suppose an econometrician sees many realizations of excess returns and prices generated

from the numerical example. On these data, he runs a regression of x on the price of the

contingent claim:

re = α + βp+ ν,

where ν is an error term.14

Asym. info. Full info.

α 0.073 0.069

β -0.031 -0.017

R2 0.105 0.033

Table 1: Regressions of excess returns on prices

Table 1 presents summary statistics of the regression coefficients that the econometrician

would obtain of the data were generated in an economy with asymmetric information or with

full information. There is a negative relationship in both cases. Moreover, that relationship

becomes more pronounced in the economy with private information. In addition, the R-squared

is higher in the economy with asymmetric information.

Intuitively, predictability of excess returns requires shocks that affect the price without

affecting the conditional expectation of the payoff conditional on the price. In our setup, changes

in ε—shocks that affect aggregate exposure ε but not aggregate news—serve this purpose.

Exposure shocks are present in both economies. However, Proposition 5.2 says that they have

a larger effect on prices in the economy with asymmetric information. Figure 2 shows that the

14In our two-state setting, the value of β is independent of the asset used to run the regression. If the
econometrician used the contingent claim paying when τ = 1 the only coefficient that would change is α.
Similarly, the econometrician could use an asset with some other payoff contingent on τ .
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larger sensitivity of prices to aggregate exposure shocks is more pronounced at “intermediate”

price values. At these prices there is more uncertainty about the actual values of δ and, thus,

the discrepancy between agents’ beliefs and δ becomes larger.

Figure 6 further illustrates this point. It plots the derivative of E [δ|p] with respect to

the price in the economies with private and full information: The lower this derivative is, the

more prices must fluctuate relative to expected returns. The figure shows that there is an

intermediate range of price values where the sensitivity of expected excess returns is lower in

the asymmetric information case.

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

p

 d
 E

(δ
 

 p
) 

/ d
p

 

 

AI
FI

Figure 6: Sensitivity of expected returns to price changes, measured by the derivative ∂E(δ|p)
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, in the

economies with full and asymmetric information

Why predictability? Beliefs vs risk attitude

The presence of return predictability suggests an exploitable portfolio strategy based on

public information: At low prices, borrow at the riskless rate and buy claims on τ ; at high

prices, sell short claims on τ and invest in the riskless asset. It is interesting to ask why the

rational agents in the model do not exploit this strategy. The first-order condition of type θ

implies that the expected excess return perceived by type θ must be equal to the risk premium

perceived by type θ. We can therefore write the expected excess return conditional on public

information—namely, the price—as

E (τ |p)− pτ = E [τ |p]−E [τ |θ] + var (τ |θ) e (θ, c(θ) , δ̂ (θ, p)) (13)

Here the difference in expectations—the first term on the right-hand side—is a measure
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of pessimism of a type θ agent. The second term is the subjective risk premium of a type

θ agent—his subjective variance of x multiplied by his exposure. Consider now a low price,

where the expected excess return is positive. This can be consistent with optimal behavior

for two reasons: The agent can be more pessimistic than what one would be on the basis of

public information, or he could demand a risk premium because of the exposure he chooses in

equilibrium.

In the equilibrium of our model, both reasons apply. High-exposure types demand a high risk

premium to hold claims on τ , as their consumption level is more volatile and correlated with the

payoff of these assets. Yet they are also optimistic about event τ = 1, which deters them from

selling too many of these claims. For low-exposure types, the consumption allocation is less

sensitive to the realization of τ or it is negatively correlated with the payoff of this contingent

claim. This implies that they demand a lower risk premium. At the same time, they are more

pessimistic. This deters them from buying too many of these contingent claims.

5.2 Risk premia and trading in financial crises

While our model is stylized, the basic mechanism—changes in aggregate exposure matter more

with asymmetric information—may help understand the behavior of asset prices and asset

trading in the recent U.S. financial crisis. It has been widely reported that the market for

mortgage-backed securities “seized up,”and that the trades that did take place were done at “fire

sale prices.”One explanation discussed in the press runs as follows. Securities are heterogeneous

and there is a lemons problem: Market participants cannot tell the good securities from the bad.

As a result, only bad securities are traded, at low prices. This story assumes that securities are

valued at their expected payoffs. The price of traded securities does not appear low to an agent

who knows their expected payoff. In other words, there is not an unusually high risk premium.

Our model points to a different mechanism that also generates low trading activity at low

sale prices. However, it works via low risk premia driven by uncertain exposure to aggregate risk.

It does not rely on idiosyncratic risk in mortgage-backed securities. Instead, we think of two

standardized securities. “Top-rated” mortgage-backed securities are riskless claims. “Junk”

securities are bets on a risk factor τ which affects repayment on mortgages, such as house

prices or economic activity. The agents in the model can be thought of as financial institutions,

with risk aversion taken to be a stand-in for some imperfection (for example, risk aversion of

undiversified managers, or an upward sloping cost of external finance).

27



Banks’ exposure to mortgage risk depends on how many top-rated versus junk securities

they have in their portfolios. Consider first an initial scenario, which may capture the situation

before summer 2007. There are relatively few junk securities, and the exposure of the financial

system to the risk factor is perceived to be small. Formally, using our two-state setting for

purposes of illustration, the number of banks with high initial exposure is at the low value

εl and everybody knows this. Banks are therefore able to efficiently spread around exposure

among themselves; for example banks that have originated subprime mortgages and have a

high initial exposure to τ are able to package them into junk securities and sell them to other

banks at relatively low risk premia reflected in the price P̃FI

(
δ, εl
)
.

Consider next a second scenario where the risk assessment of some top-rated securities has

changed. Suddenly, many securities that were previously considered top-rated are no longer

considered riskless. In terms of the model, assume that we move to a situation were some top-

rated securities held by some banks are converted to junk. We thus consider the comparative

static whereby the number of banks with high initial exposure increases to the high value εh. If

the new distribution of exposure were known then the shock would lower the prices to P̃FI

(
δ, εh

)

as risk premia increase, but should also lead to efficient sharing of exposure as banks who had

a lot of top-rated securities turn to junk sell some of their junk to other, less exposed banks.

Assume now, however, that exposures are uncertain: Nobody knows precisely which banks

and how many banks altogether have become more exposed. Formally, we consider the asym-

metric information economy, where agents do not know whether the aggregate exposure is εl or

εh (but the true exposure is εh). In addition, they do not know the true distribution δ of the risk

factor τ that governs mortgage losses. Banks only see their own exposure, but need to estimate

the aggregate exposure of the whole financial system, as well as the expected losses. Since

banks know that everyone used similar risk assessment tools in the past, they take their own

exposure as a signal of aggregate exposure. In addition, they observe the low price P̃
(
δ, εh

)
.

Banks with high exposure believe that many other banks are similarly exposed. They

therefore perceive the low price as largely due to an increase in aggregate exposure, rather than

an increase in default probabilities (lower δ). In contrast, banks with low exposure believe that

the overall exposure of the financial system is low. They conclude that the low price must be

reflecting higher default probabilities. As a result, they hesitate in purchasing securities from

the high exposure banks, who hold on to their exposures.

At the same time, from the perspective of an observer, the price P̃
(
δ, εh

)
—and therefore the
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price on any security that loads on the factor τ—looks “too low,”like a “fire sale price.”Indeed,

consider an observer who has a good estimate of the actual expected payoff on the junk secu-

rities, or equivalently the true δ, and who suspects that exposure might have increased. This

observer knows that higher exposure will imply a higher risk premium and hence a lower price.

From experience, he knows the size of risk premia in times when banks know aggregate expo-

sure. He can thus compute the price that would obtain, in his experience, in the “worst case”

state for aggregate exposure, namely P̃FI

(
δ, εh

)
. Comparing this price to the observed price

P̃
(
δ, εh

)
, the observer will then be puzzled to find that the market price on assets that depend

on τ is even lower, and their risk premium even higher.

5.3 Wealth effects in asset pricing

In section 5.1 we have considered the excess volatility of asset prices relative to a present value

model. Another interesting question is whether prices will appear excessively volatile relative

to a benchmark model that allow for risk adjustment. One such benchmark is risk adjustment

using total wealth, or equivalently here aggregate consumption.

We thus consider an econometrician who studies the Euler equation of a representative

agent. The motivation comes from results in the asset pricing literature that suggest high and

time varying risk aversion (that is, higher risk aversion when asset prices are low) can reconcile

representative-agent models with the data. We ask whether the presence of private information

can help understand these results.

Consider an econometrician who assumes that the data generating process comes from a

representative-agent model with logarithmic preferences. He observes the joint distribution

of (τ,Ω, p): Asset payoffs, aggregate consumption, and the price. The econometrician does

not know a priori the investors’ information structure. He is aware of this, and therefore

estimates the model by maximum likelihood, allowing for prices to depend on signals about

future aggregate consumption and asset payoffs that agents receive at date 1.

An unrestricted estimation will recover the true joint distribution, summarized by the num-

ber η, the distribution of δ, and the price function. In particular, the econometrician will find

that movements in ε (i.e., changes in aggregate consumption that are not in stock payoffs) are

reflected in the price. He infers from this that the representative agent receives a signal that

reveals ε.

However, when the econometrician imposes the cross-equation restrictions implied by log
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preferences, he will reject the model. Satisfying the cross-equation restrictions would require

that, for all p,
p

1− p
=

δj(p)

1− δj(p)

Ω0 (ε
j)

Ω1 (εj)
for j = h, l.

Equation 11 implies that this condition is typically violated.

To fix this problem, the econometrician can introduce preference shocks to fit the data

exactly using his representative agent model. We capture the preference shock by specifying

subjective beliefs δ̃j (p) which depend on the price as well as on the state j. The econometrician

thus determines δ̃j (p) such that

p

1− p
=

δ̃j(p)

1− δ̃j(p)

Ω0 (ε
j)

Ω1 (εj)
for j = h, l.

Proposition 5.1 now implies that δ̃h (p) > δh (p) and δ̃l (p) < δl (p). In other words, the

econometrician’s model will make agents more optimistic about τ in times of high aggregate

exposure to τ , and more pessimistic in times of low aggregate exposure. Since the price is

decreasing in exposure, the econometrician has thus introduced a force that induces additional

pessimism at low prices and optimism at high prices.

Of course, the price also depends on δ, so we do not yet know whether the econometrician

will conclude that the agent is pessimistic on average. The following proposition considers the

econometrician’s belief conditional on the price. It shows that the econometrician concludes

agents are pessimistic at a price p if aggregate wealth W (ε, p) = pΩ1(ε) + (1 − p)Ω0(ε) is

positively correlated with aggregate exposure conditional on the price.

Proposition 5.3. The econometrician’s belief is more pessimistic conditional on the price if

and only if

W
(
εl, p

)
> W

(
εh, p

)
,

that is, there is more wealth in states with less aggregate exposure.

The condition in Proposition 5.1 depends on the endogenous price p. We have W
(
εl, p

)
>

W
(
εh, p

)
if and only if

p
(
Ω1

(
εl
)
− Ω1

(
εh
))

+ (1− p)
(
Ω0

(
εl
)
− Ω0

(
εh
))
> 0 (14)

If moreover the aggregate endowment vectors are clearly ranked

Ωτ

(
εl
)
> Ωτ (ε

h), τ = 0, 1 (15)
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then (14) holds for all values of p ∈ (0, 1). Therefore, the econometrician will conclude that the

agent is more pessimistic than what the date warrants given any price.

To sum up, suppose data are generated by an economy with log investors with rational

expectations, where (15) holds. An econometrician who observes the data and studies the Euler

equation of a log representative agent will reject the model. In particular, he will conclude that

the agent is “too pessimistic.”In other words, he will discover an equity premium puzzle—

exogenously assumed pessimism has the same effect on unconditional moments as has higher

risk aversion. Moreover, he will discover a force that increases risk aversion at low prices

and vice versa. These findings do not reflect preferences with time varying risk aversion, but

instead the econometrician’s mistaken assumption that agents have symmetric information, so

that standard representative-agent analysis applies.

6 Extensions

In this section, we consider several extensions that show how the basic themes of the paper

work outside the concrete example of Section 3. We first point out that our main results do

not depend on identical log utilities but carry over unchanged to heterogeneous preferences as

long as all belong to the linear risk tolerance class. We then present an example to show that

the basic logic also works in a setup with minimal assumptions on utility. Finally, relate our

results to the commonly used framework with exponential utility and normal shocks. We show

that the main results concerning the excess sensitivity of prices to aggregate exposure shocks

and the adverse effect of uncertain aggregate exposure on trading volumes are also present in

that setup.

6.1 Linear risk tolerance

For interpreting trading by financial institutions it is interesting to allow for differences in

preferences across investors. This is because curvature in objective functions, for example due

to changes in financing constraints, is likely to be a relevant source of heterogeneity in the data.

Suppose that preferences are assumed to belong to the LRT class, with marginal risk tolerance

equalized across agents. Formally, felicities are
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u (c; θ) =







σ
σ−1

(α (θ) + σc)1−
1
σ if σ /∈ {0, 1}

log (α (θ) + c) if σ = 1

−α (θ) exp (−c/α (θ)) if σ = 0 and α (θ) > 0

The common denominator of these preferences is that risk tolerance −u′/u′′ (the inverse of

the coefficient of absolute risk aversion) is given by the linear function α (θ) + σc. Important

special cases of LRT preferences are CRRA utility (α (θ) = 0, with 1/σ > 0 the coefficient

of relative risk aversion), CARA utility (σ = 0, with α (θ) > 0 the coefficient of absolute

risk aversion), and quadratic utility (σ = −1). We require that the coefficient of marginal

risk tolerance σ be equal across agents. However, there can be differences in risk attitude

independent of income that are captured by differences in α (θ). For the case σ > 0, an

intuitive way to think about the coefficient α (θ) in our context is as a riskless endowment that

cannot be traded away.

We show in the appendix that propositions 5.1 and 5.2 carry over without any modification.

That is, the results that prices overreact to aggregate exposure shocks and that high-exposure

types are more optimistic than low-exposure types do not depend on the logarithmic utility

assumption

6.2 More general preferences

In the appendix A.3 we provide an example that is minimal in terms of the shock structure—

there are only two aggregate states, so δ and ε are perfectly correlated—but we make no

assumptions on preferences utility beyond expected utility. We show conditions for the existence

of an equilibrium with asymmetric information and that the main property underlying our

results—investors with more exposure to a risk factor are more optimistic about the risk factor

in the presence of private information—is present also in this setting. This shows that our main

results do not hinge on preferences with LRT.

6.3 Exponential utility and normally distributed shocks

Here we consider a version of the model in which agents have exponential utility and face

normally distributed shocks. We show that the excess sensitivity of prices to aggregate exposure

shocks and the relationship between idiosyncratic exposure shocks and beliefs that we find in
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the discrete state setup also apply to this environment. The tradable aggregate risk factor τ

realized at date 2 is now

τ = δ + w,

where δ and w are independent and normally distributed with mean zero and variances 1/πδ

and 1/πw, respectively. Here, thus, δ will play the same role as before—it will serve the role

of an aggregate signal on the realization of the risk factor τ—and w is the shock that makes δ

less than a perfect signal.

Consumption set, types, and exposure

Note that the assumption that agents choose normally distributed consumption plans from

the set C = {c : there are ac, bc ∈ R s.t. c = ac + bcτ} is not restrictive: The optimal consump-

tion that agents can achieve by trading a full range of claims contingent on τ belongs to C.

The value of a consumption bundle in C is P (c) = ac+ bcp, where p is a parameter of the price

function. As in our two-state model, finding the equilibrium price for a given aggregate state

boils down to finding one number p. Here it can be interpreted as the relative price of a claim

on the factor relative to the price of a riskless asset.

The endowment of a type θ agent is the random variable ω (θ) = aω + bω (θ) τ . The agent’s

type thus determines the loading bω (θ) of his endowment on the risk factor τ , and it satisfies

bω (θ) = ε+ v (θ)

where v (θ) is normally distributed with mean zero and variance 1/πv. Thus, the loading has

the component ε, which is aggregate and common across agents—it is aggregate exposure, in

line with the notation in the general case above. We assume δ and ε to be uncorrelated, as in

the leading example in Section 4.15

The agent’s type θ also determines an individual signal s (θ), which satisfies

s (θ) = δ + u (θ) .

Here, u (θ) is normally distributed with mean zero and variance 1/πu, and it is independent of

all other random variables.

The preferences of all types are represented by exponential utility with coefficient of absolute

risk aversion coefficient ρ, that is, u (c) = − exp (−ρc). Assume that the belief of a type θ agent

15This assumption simplifies the algebra but is not essential.
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about τ can be represented by a normal density f̂ . The exposure to the risk factor τ of a type

θ agent with consumption plan c = ac + bcτ and belief f̂ is defined as in (6), with moments

evaluated using the density f̂ . It simplifies to

e
(

c, u, f̂
)

= −
cov (τ, u′ (c))

var (τ |I (θ))E [u′ (c)]
= bcρ,

and thus does not depend on f̂ .

As in the two-state example, exposure is positive if and only if the consumption plan is

positively correlated with τ , and exposure is zero if the consumption plan is independent of τ

or the agent is risk neutral. The initial exposure of type θ, defined using some arbitrary normal

reference density f, is e (ω, u, f) = bω (θ) ρ.
16 Since preferences are identical LRT preferences,

there is a representative agent with the same utility function. The aggregate endowment is

Ω (ε) = āω + ετ , so aggregate exposure is given by e (Ω (ε) , u, f) = ερ.

Results It is straightforward, using standard signal-extraction techniques, to find individual

decision rules and look for the market price function by solving a fixed-point problem. We have

Proposition 6.4. In this economy,

1. there exists an equilibrium with a linear price function

P̃ (δ, ε) = βδ + γε.

2. The price function is increasing in the aggregate dividend news δ (that is, β > 0) and

decreasing in aggregate exposure ε (that is, γ < 0).

3. Compared with the pooled information case, the price responds less to news and responds

relatively more to aggregate exposure.

4. In equilibrium, agents with higher initial exposure are more optimistic about τ , that is, the

conditional expectation E [τ |θ, p] is higher if the endowment load on τ (bω (θ)) is higher.

Figure 7 provides an example in which trading volume is lower in the economy with private

information.

The figure corresponds to an economy in which πδ = πw = 90 and πε = 400. This implies a

standard deviation of the aggregate risk factor of 14.9 percent (half of which could be learned

16Since the exposure measure does not depend on beliefs, there is no need for a second measure such as ẽ

that we used in the two-state example above.
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Figure 7: Average trading in economy with asymmetric information / average trading in economy

with pooled information.

if agents pooled their information) and a standard deviation of the aggregate endowment of

the risk factor of 5 percent. The figure, more specifically, shows the average trading volume in

the asymmetric information economy relative to the one in the pooled information economy for

different precisions of individual signals and idiosyncratic exposure shocks, namely

∫
| P̃ (δ, ε) (bc (θ)− bω (θ)) | fδ(δ)fε(ε)fu(u)fv(v)dδdεdudv

∫
| P̃ P (δ, ε) (bPc (θ)− bω (θ)) | fδ(δ)fε(ε)fu(u)fv(v)dδdεdudv

,

with bPc = δ−p

ρπ−1
w
, and P̃ P = δ − ρπ−1

w ε denoting the individual loadings on the risk factor and

the price function in the pooled information economy, respectively.

The graph shows that average trading is lower than in the pooled information economy and

that it decreases with the precision of the information about the news δ.

7 Conclusions

We have argued that a Lucas-style model of asset pricing, augmented to allow for “speculative”

trading motives due to differences in beliefs, can help us understand both asset prices and

asset trading. In particular, we constructed a model where individuals have the same prior

beliefs about asset payoffs but receive individual signals updating this belief, and due to signal

extraction problems, they have different beliefs ex post. In our model, aggregate shocks to

exposure play a prominent role: as in Lucas’s model, exposure shocks influence prices, but under
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asymmetric information the impact of these shocks is stronger and it goes along with drops in

trading volumes. We argued that these features can be used to interpret the recent financial

crisis. We also demonstrated that the model’s propagation to exposure shocks strengthens the

predictability of asset returns, which helps understand the data.

It should be emphasized that the mechanisms we unveil here fundamentally rely on modeling

belief formation as a rational (but subject to information dispersion and imperfect revelation

by prices). Our characterization of who is pessimistic and who is optimistic, ex post, relies on

Bayesian updating, and it lies behind the drop in volumes as well as the results on pricing. In

contrast, a model with exogenous belief differences would, in general, be silent on these issues.

Imperfect revelation of aggregate information does rely on market incompleteness; in this

sense, we rely on an exogenously assumed friction. The particular market incompleteness

we consider is that there is no market in “exposure outcomes”: aggregate exposure shocks

constitute the noise that hinders agents from reading payoff news off of prices. It is perhaps

comforting that the missing market here is not one that is directly payoff-relevant—exposure

is, at least in our leading examples, independent of the asset payoff—but it would be important

to further examine what deeper reasons could prevent such a market from emerging.

The use of our model for understanding extreme events may perhaps be extended to cover

other cases, such as the episodes surrounding capital-market liberalizations. There, a key

question is how exposure to the local market participants evolved after markets opened up. A

lower exposure that is underestimated can, in this case, and for reasons parallel to those used

for the crisis, lead to a very strong upward movement in the valuation of the local market—an

over-reaction, because the price increase is partly misinterpreted as good payoff news. Whether

the current sovereign debt crisis in Europe—in particular, the large drop in bond prices—can

be better understood with the help of a model like that presented here, i.e., in terms of an

imperfectly observed exposure shock, depends on the extent to which the traders in the market

(large banks, etc.) were not sure of the distribution of the bonds across active traders. It is not

clear to us to what extent this was an important factor.

The model has rich implications for welfare—both its ex-post distribution across agents and

in ex-ante terms. Is there a role for government policy and, if so, what is it? In our competitive

equilibrium, agents act optimally given prices, obviously, but can different actions (perhaps

induced by policy) change the information transmission through prices and make risk sharing

more efficient? These are issues well worth examining in detail, but they are beyond the scope
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of the present paper.
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A Appendix: for online publication

A.1 Proofs of propositions 5.1-5.3

This appendix collects all proofs. For the proofs for the two state setup, that is, propositions

5.1-5.3 and 6.1-6.3, the following notation is helpful. Define, for j = h, l, the functions P̃ j :

[0, 1] → [0, 1] by P̃ j (δ) := P̃ (δ, εj). We focus on partially revealing equilibria in which the P̃j

are continuous and strictly increasing in δ. In this case, there are well-defined inverse functions

defined by δj (p) = P̃−1
j (p).

Consider the inference problem of a type θ agent. His posterior probability δ̂ (θ, p) of the

event τ = τ1 is his posterior mean of the aggregate news δ. If he observes a price p, knowledge

of the price function tells him that the distribution µ is parameterized either by (δh (p) , εh)

or by (δl(p), εl). We denote the two distributions by µh (.; p) and µl (.; p), respectively. The

probability that µ = µh (.|p), based on the price alone, is

ηp =
ηδh

′
(p) f

(
δh (p) ; εh

)

ηδ′h (p) f (δ
h (p) ; εh) + (1− η) δl′ (p) f (δl (p) ; εl)

, (16)

where f(δ; ε denotes the density function of δ conditional on ε. In addition to the price, the

agent observes his type, which is also a signal about the distribution µ. Let η̂ (θ, p) denote the

posterior probability that a type θ agent observing a price p assigns to µ = µh (.|p). It is given

by

η̂ (θ, p) =
ηpµh (θ; p)

ηpµh (θ; p) + (1− ηp)µl (θ; p)
.

An agent believes that the distribution µh is more likely if his own type θ is more likely to be

drawn from µh relative to µl. For example, a high exposure agent believes that it more likely

that there are many high exposure agents. His posterior probability of the event τ = 1 is then

δ̂ (θ, p) = η̂ (θ, p) δh (p) + (1− η̂ (θ, p)) δl (p) .

Proof of Proposition 5.1.

As a preliminary step, we establish

Lemma 1. (a) δ̂ (s, ē, p) > δ̂ (s, e, p) for all s if and only if δh (p) > δl (p).

(b) δ̂ (s1, e, p) > δ̂ (s0, e, p) for all e.

Proof. The individual belief δ̂ can be viewed as an average of δh and δl,

δ̂ (s, e, p) = η̂ (s, e, p) δh (p) + (1− η̂ (s, e, p)) δl (p) (17)
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where the individual weights are

η̂ (s, e, p) =
ηpµh (s, e)

ηpµh (s, e) + (1− ηp)µl (s, e)
.

By independence of s and e, the population weights are,

µj (s1, ē; p) = δj (p) εj

µj (s1, e; p) = δj (p)
(
1− εj

)

µj (s0, ē; p) =
(
1− δj (p)

)
εj

µj (s0, e; p) =
(
1− δj (p)

) (
1− εj

)

The implication (a) follows from the fact that η̂ (s, ē, p) > η̂ (s, e, p). Indeed, that statement

is equivalent to
µh (s, ē; p)

µl (s, ē; p)
>
µh (s, e; p)

µl (s, e; p)
(18)

which is in turn equivalent to

µh (s, ē; p)

µh (s, e; p)
=

εh

1− εh
>

εl

1− εl
=
µl (s, ē; p)

µl (s, e; p)
.

To show implication (b), consider first the case δh > δl. We want to show that η̂ (s1, e, p) >

η̂ (s0, e, p) , which is equivalent to

µh (s1, e; p)

µl (s1, e; p)
>
µh (s0, e; p)

µl (s0, e; p)
. (19)

For any e, this is equivalent to
δh

δl
>

1− δh

1− δl
,

and thus holds if and only if δh > δl.

In the case δh < δl, we want to show that η̂ (s1, e, p) < η̂ (s0, e, p), that is, the reverse of

(19), which holds iff δh < δl.�

We now establish Part 2 of the proposition. Part 1 then follows immediately from Lemma

1

Start from the market clearing condition for the claim on τ = 1:

p
∑

θ

µj (θ; p) c1 (θ;µj) = pΩ1

(
εj
)
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The first order conditions and budget constraint for agent θ can be written as

δ̂ (θ, p)

1− δ̂ (θ, p)

c0
c1

=
p

1− p

pc1 + (1− p) c0 = w (θ, p)

Combining the first order conditions and budget constraint, we can then rewrite the market

clearing conditions as

∑

θ

µj (θ; p) δ̂ (θ, p)w (θ, p) = pΩ1

(
εj
)

Intuitively, the function ψ acts as an “adjusted” expenditure share in a world where endowments

and consumption have been linearly translated using the parameters σ and α. Using the

definition of wealth, we now have

p

1− p
=

(
δ̄0 (ε

j, p)

1− δ̄1(εj, p)

)(
Ω0 (ε

j)

Ω1 (εj)

)

for j = h, l. (20)

where

δ̄τ
(
εj, p

)
=
∑

µj (θ)
ωτ (θ)

Ωτ (εj)
δ̂ (θ, p) for τ = 0, 1

is the average of beliefs δ̂ weighted by endowments in states τ and j.

Now suppose towards a contradiction that δh (p) ≤ δl (p). By Lemma 1, the individual

beliefs are ordered as δ̂ (s, ē, p) ≤ δ̂ (s, e, p) and δ̂ (s1, e, p) ≥ δ̂ (s0, e, p).

The averages δ̄τ (ε
j) can now be ranked, for τ = 0, 1:

δ̄τ
(
εh
)
=
εhωτ (ē)

Ωτ (εh)

[

δhδ̂ (s1, ē, p) +
(
1− δh

)
δ̂ (s0, ē, p)

]

+

(
1− εh

)
ωτ (e)

Ωτ (εh)

[

δhδ̂ (s1, e, p) +
(
1− δh

)
δ̂ (s0, e, p)

]

≤
εlωτ (ē)

Ωτ (εl)

[

δhδ̂ (s1, ē, p) +
(
1− δh

)
δ̂ (s0, ē, p)

]

+

(
1− εl

)
ωτ (e)

Ωτ (εl)

[

δhδ̂ (s1, e, p) +
(
1− δh

)
δ̂ (s0, e, p)

]

≤
εlωτ (ē)

Ωτ (εl)

[

δlδ̂ (s1, ē, p) +
(
1− δl

)
δ̂ (s0, ē, p)

]

+

(
1− εl

)
ωτ (e)

Ωτ (εl)

[

δlδ̂ (s1, e, p) +
(
1− δl

)
δ̂ (s0, e, p)

]

= δ̄τ
(
εl
)
, (21)

where the first inequality holds because δ̂ (s, ē, p) ≤ δ̂(s, e, p) and εh > εl, and where the second

inequality holds because δ̂ (s1, e, p) ≥ δ̂ (s0, e, p) and δ
h ≤ δl.
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Given that aggregate exposure is strictly increasing in ε, it thus follows that

Ω0

(
εl
)

Ω1 (εl)
>

Ω0

(
εh
)

Ω1 (εh)
(22)

Putting together inequalities (21) and (22), we have

p

1− p
=

δ̄0
(
εh
)

1− δ̄1(εh)

Ω0

(
εh
)

Ω1 (εh)

<
δ̄0
(
εl
)

1− δ̄1(εl)

Ω0

(
εl
)

Ω1 (εl)
,

which contradicts the equilibrium condition (20).

�

Proof of Proposition 5.2.

Using analogous notation as for the REE price function, we define P j
F I (δ) := PFI (δ, ε

j).

By (10) in the proof of Proposition 5.1, the functions P j
F I are strictly increasing and thus have

well-defined inverse functions δjF I (p) =
(
P j
F I

)−1
(p).

We now establish that for all p ∈ (0, 1),

δh (p) > δhFI (p) > δlF I (p) > δl (p) .

Since both P̃ and P̃FI are strictly increasing and continuous in δ, this proves part 3.

In the full information case, we can follow the same algebra as in the proof of Proposition

5.1. above to arrive at equation (20). If all beliefs are equal at δ̂ (θ, p) = δj (p), that equation

simplifies to

p

1− p
=

δjF I(p)

1− δjF I(p)

Ω0 (ε
j)

Ω1 (εj)
for j = h, l. (23)

Since all the δ̄τ (ε
j) are averages of the δ̂ (θ, p), which are averages of δh (p) and δl (p), we

have δ̄τ
(
εh
)
< maxθ δ̂ (θ, p) < δh (p) for τ = 0, 1. This and equation (20) imply

p

1− p
<

δh (p)

1− δh (p)

Ω0

(
εh
)

Ω1 (εh)
. (24)

The definition of δhFI in (23) thus implies δhFI < δh(p). The argument for δlF I > δl follows

analogously from the fact that δ̄τ
(
δ, εl
)
> δl(p) for τ = 1, 2.

�

Proof of Proposition 5.3. We want to show
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ηhp δ̂ + (1− ηp) δ̂
l < ηpδ

h + (1− ηp) δ
l.

or equivalently

ηp

(

δ̂h − δh
)

+ (1− ηp)
(

δ̂l − δl
)

< 0

Market clearing at the price p is

∑

θ

µj (θ) δ̂ (θ, p)w (θ, p) = p
∑

θ

µj (θ)ω1 (θ) , (25)

where

δ̂ (θ, p) = η̂ (θ, p) δh (p) +
(
1− η̂ (θ, p))δl(p

)

η̂ (θ, p) =
ηpµh (θ)

ηpµh (θ) + (1− ηp)µl (θ)

ηp =
ηδh

′

f
(
δh
)

ηδh′f (δh) + (1− η) δl′f (vl)

Multiply the market clearing equation for state h by ηp, multiply that for state l by (1− ηp)

and add the two equations to get

ηp
∑

θ

µh (θ)
ηpµh (θ) δ

h + (1− ηp)µl (θ) δ
l

ηpµh (θ) + (1− ηp)µl (θ)
w (θ, p)

+ (1− ηp)
∑

θ

µl (θ)
ηpµh (θ) δ

h + (1− ηp)µl (θ) δ
l

ηpµh (θ) + (1− ηp)µl (θ)
w (θ, p)

= p

(

ηp
∑

θ

µh (θ)ω1 (θ) + (1− ηp)
∑

θ

µl (θ)ω1 (θ)

)

Rearranging terms we get

ηpδ
hW

(
εh, p

)
+ (1− ηp) δ

lW
(
εl, p

)
= p

(
ηpΩ1

(
εh
)
+ (1− ηp)Ω1

(
εl
))
, (26)

where W (εj, p) is aggregate wealth in state j.

Now the subjective beliefs fit by the econometrician satisfy

δ̂jW
(
εj, p

)
= pΩ1

(
εj
)
, j = h, l.

We can again multiply the equations for h and l by ηp and 1− ηp, respectively. We get that

ηhp δ̂
hW

(
εh, p

)
+ (1− ηp) δ̂

lW
(
εl, p

)
= p

(
ηpΩ1

(
εh
)
+ (1− ηp) Ω1

(
εl
))
, (27)

Combining (26) and (27), we have

ηp

(

δ̂h − δh
)

W
(
εh, p

)
+ (1− ηp)

(

δ̂l − δl
)

W
(
εl, p

)
= 0
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But then

ηp

(

δ̂h − δh
)

+ (1− ηp)
(

δ̂l − δl
)

= ηp

(

δ̂h − δh
)

− (1− ηp)
ηp

(

δ̂h − δh
)

W
(
εh, p

)

(1− ηp)W (εl, p)

=
ηp

W (εl, p)

(

δ̂h − δh
) (
W
(
εl, p

)
−W

(
εh, p

))

Since δ̂h < δh from Proposition 5.2., the condition follows.�

A.2 The Economy with Linear Absolute Risk Tolerance

This subsection presents propositions 6.1-6.2, which show that the main results obtained with

logarithmic utility function carry over with preferences that exhibit LRT.

A convenient feature of the LRT family of preferences is that, when agents observe the

pooled information and learn δ(µ), there exists a representative agent who has an LRT felicity

function with the same coefficient of marginal risk tolerance σ as the individual agents and the

average coefficient α:

∑

θ∈Θ

µ (θ)α (θ) =: ᾱ (ε (µ)) .

Here ᾱ is well defined as a function of ε only, because we have assumed that types with the

same initial exposure have the same felicity function.

For σ 6= 0, aggregate exposure is determined by

e (Ω(µ); u;µ) =
1

1− δ(µ) + 1
(

ᾱ(ε(µ))+σΩ1(µ)

ᾱ(ε(µ))+σΩ0(µ)

)(1/σ)
−1

.

and the price function PFI (µ) = P̃FI (δ (µ) , ε (µ)) (in the full information case) is available

in closed form using equation (10). Propositions 6.1 and 6.2 show that the results presented in

propositions 5.1 and 5.2 carry over when utility functions display linear risk tolerance.

Proposition 6.1. Consider an equilibrium with a price function P̃ that is continuous and

increasing in δ. Then

1. Individual beliefs are ranked by

(a) δ̂ (s, ē, p) > δ̂ (s, e, p) (for a given signal, agents with higher exposure to the risk factor

τ believe that τ is more likely to be high)

(b) δ̂ (s1, e, p) > δ̂ (s0, e, p) (for given exposure, agents with a better signal about the risk

factor τ believe that τ is more likely to be high).
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2. δh (p) > δl (p) (holding fixed the price, aggregate news about the risk factor τ is better

when more agents have high exposure to τ).

Proposition 6.2 Consider a nonrevealing equilibrium with price function P̃ that is continuous

and strictly increasing in δ. The equilibrium price depends more strongly on aggregate exposure

than in the full information case: for every δ ∈ (0, 1) ,

P̃
(
δ, εl
)
> P̃FI

(
δ, εl
)
> P̃FI

(
δ, εh

)
> P̃

(
δ, εh

)
.

Proof of Proposition 6.1.

See proof of proposition 5.1 for Part 1 . We now establish Part 2 of the proposition.

Part 1 then follows immediately from Lemma 1

We begin with the case σ 6= 0. Start from the market clearing condition for the claim on

τ = 1:

p
∑

θ

µj (θ; p) c1 (θ;µj) = pΩ1

(
εj
)

Multiplying the equation by σ, adding ᾱ (εj) and rearranging, we obtain

p
∑

θ

µj (θ; p) (α (θ) + σc1 (θ;µj)) = p
(
ᾱ
(
εj
)
+ σΩ1

(
εj
))

The first order conditions and budget constraint for agent θ can be written as

δ̂ (θ, p)

1− δ̂ (θ, p)

(
α (θ) + σc1
α (θ) + σc0

)− 1
σ

=
p

1− p

p (α (θ) + c1) + (1− p) (α (θ) + c0) = w (θ, p) + α (θ)

Define the expenditure share in the case of power utility with belief δ by

ψ (δ, p) :=
1

1 +
(

1−p

p

)1−σ (
1−δ
δ

)σ
.

Combining the first order conditions and the definition of ψ, we can then rewrite the market

clearing conditions as

∑

θ

µj (θ; p)ψ
(

δ̂ (θ, p) , p
)

(α (θ) + σw (θ, p)) = p
(
ᾱ
(
εj
)
+ σΩ1

(
εj
))
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Intuitively, the function ψ acts as an “adjusted” expenditure share in a world where endowments

and consumption have been linearly translated using the parameters σ and α. Using the

definition of wealth, we now have

p

1− p
=

(
ψ̄0 (ε

j, p)

1− ψ̄1(εj, p)

)(
ᾱ (εj) + σΩ0 (ε

j)

ᾱ (εj) + σΩ1 (εj)

)

for j = h, l. (28)

where

ψ̄τ

(
εj, p

)
=
∑

µj (θ)
α (θ) + σωτ (θ)

ᾱ (εj) + σΩτ (εj)
ψ
(

δ̂ (θ, p) , p
)

for τ = 0, 1

is an average of the adjusted expenditure shares ψ formed by weighting individual adjusted

expenditure shares by adjusted endowments in states τ and j.

Now suppose towards a contradiction that δh (p) ≤ δl (p). By Lemma 1, the individual

beliefs are ordered as δ̂ (s, ē, p) ≤ δ̂ (s, e, p) and δ̂ (s1, e, p) ≥ δ̂ (s0, e, p).

The effect of beliefs on the adjusted expenditure shares ψ depends on the sign of σ. We

begin with the case σ > 0. To simplify notation, write ψ̂ (e, s, p) := ψ
(

δ̂ (s, ē, p) , p
)

. If

σ > 0, the function ψ is strictly increasing in δ, which implies ψ̂ (s, ē, p) ≤ ψ̂(s, e, p) and

ψ̂ (s1, e, p) ≥ ψ̂ (s0, e, p).

The averages ψ̄τ (ε
j) can now be ranked, for τ = 0, 1:

ψ̄τ

(
εh
)
=
εhωτ (ē)

Ωτ (εh)

[

δhψ̂ (s1, ē, p) +
(
1− δh

)
ψ̂ (s0, ē, p)

]

+

(
1− εh

)
ωτ (e)

Ωτ (εh)

[

δhψ̂ (s1, e, p) +
(
1− δh

)
ψ̂ (s0, e, p)

]

≤
εlωτ (ē)

Ωτ (εl)

[

δhψ̂ (s1, ē, p) +
(
1− δh

)
ψ̂ (s0, ē, p)

]

+

(
1− εl

)
ωτ (e)

Ωτ (εl)

[

δhψ̂ (s1, e, p) +
(
1− δh

)
ψ̂ (s0, e, p)

]

≤
εlωτ (ē)

Ωτ (εl)

[

δlψ̂ (s1, ē, p) +
(
1− δl

)
ψ̂ (s0, ē, p)

]

+

(
1− εl

)
ωτ (e)

Ωτ (εl)

[

δlψ̂ (s1, e, p) +
(
1− δl

)
ψ̂ (s0, e, p)

]

= ψ̄τ

(
εl
)
, (29)

where the first inequality holds because ψ̂ (s, ē, p) ≤ ψ̂(s, e, p) and εh > εl, and where the second

inequality holds because ψ̂ (s1, e, p) ≥ ψ̂ (s0, e, p) and δ
h ≤ δl.

We also know that aggregate exposure is strictly increasing in ε.17 If σ > 0, it thus follows

that

17Recall that in this case aggregate exposure in state εj is equal to
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ᾱ
(
εl
)
+ σΩ0

(
εl
)

ᾱ (εl) + σΩ1 (εl)
>
ᾱ
(
εh
)
+ σΩ0

(
εh
)

ᾱ (εh) + σΩ1 (εh)
(30)

Putting together inequalities (29) and (30), we have

p

1− p
=

ψ̄0

(
εh
)

1− ψ̄1(εh)

ᾱ
(
εh
)
+ σΩ0

(
εh
)

ᾱ (εh) + σΩ1 (εh)

<
ψ̄0

(
εl
)

1− ψ̄1(εl)

ᾱ
(
εl
)
+ σΩ0

(
εl
)

ᾱ (εl) + σΩ1 (εl)
,

which contradicts the equilibrium condition (28).

Now suppose instead that σ < 0. In this case, the function ψ is decreasing in δ. As a

result, we also have ψ̂ (s, ē, p) ≥ ψ̂(s, e, p) and ψ̂ (s1, e, p) ≤ ψ̂ (s0, e, p). The inequalities in (29)

are thus reversed, and we have ψ̄τ

(
εh
)
≥ ψ̄τ

(
εl
)
. At the same time, the fact that aggregate

exposure is increasing in ε implies that (30) is reversed as well. But then

p

1− p
=

ψ̄0

(
εh
)

1− ψ̄1(εh)

ᾱ
(
εh
)
+ σΩ0

(
εh
)

ᾱ (εh) + σΩ1 (εh)

>
ψ̄0

(
εl
)

1− ψ̄1(εl)

ᾱ
(
εl
)
+ σΩ0

(
εl
)

ᾱ (εl) + σΩ1 (εl)
,

which again contradicts the equilibrium condition (28).

Finally, consider now the case of exponential utility (σ = 0) . The first order conditions for

agent θ imply that

c0 (θ) = c1 (θ) + α (θ) ln




p
(

1− δ̂ (θ, p)
)

δ̂ (θ, p) (1− p)



 .

This equation, the individual budget constraints, and the market clearing condition for state

τ = 1 imply that

∑

θ

µj (θ; p) (ω1 (θ)− ω0 (θ)) =
∑

θ

µj (θ; p)α (θ)

[

ln

(

δ̂ (θ, p)

1− δ̂ (θ, p)

)

− ln

(
p

1− p

)]

for j = l, h.

If σ = 0, the exposure of a type θ agent is determined by the ratio

e1 (θ) =
ω1 (θ)− ω0 (θ)

α (θ)
.

The previous two equations imply that

1

1− π + 1
u′(Ω0(εj))/u′(Ω1(εj))−1

=
1

1− π + 1
(

ᾱ(εj )+σΩ0(εj)

ᾱ(εj )+σΩ1(εj)

)

−1/σ
−1

,

where π denoted the probability attached to τ = 1.
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ln

(
p

1− p

)

=
∑

θ

µj (θ; p)
α (θ)

ᾱ (εj)
ϕ
(

δ̂ (θ, p) , p
)

for j = l, h, (31)

where

ϕ (δ, p) = ln

(

δ̂ (θ, p)

1− δ̂ (θ, p)

)

− e1 (θ) .

Assume towards a contradiction that δh (p) ≤ δl (p). The function ϕ is strictly increasing in

δ and strictly decreasing in e1, which implies ϕ (s, ē, p) < ϕ(s, e, p) and ϕ (s1, e, p) ≥ ϕ (s0, e, p).

Now define ε̃j as

ε̃j :=
εjα (ē)

εjα (ē) + (1− εj)α (e)
=

1

1 + (1−εj)
εj

α(e)
α(ē)

.

For α (e), α (ē) > 0, it is easy to verify that ε̃j is strictly increasing in εj.

Therefore,

ln

(
p

1− p

)

= ε̃h
[
δhϕ (s1, ē, p) +

(
1− δh

)
ϕ (s0, ē, p)

]
+
(
1− ε̃h

) [
δhϕ (s1, e, p) +

(
1− δh

)
ϕ (s0, e, p)

]

< ε̃l
[
δhϕ (s1, ē, p) +

(
1− δh

)
ϕ (s0, ē, p)

]
+
(
1− ε̃l

) [
δhϕ (s1, e, p) +

(
1− δh

)
ϕ (s0, e, p)

]

≤ ε̃l
[
δlϕ (s1, ē, p) +

(
1− δl

)
ϕ (s0, ē, p)

]
+
(
1− ε̃l

) [
δlϕ (s1, e, p) +

(
1− δl

)
ϕ (s0, e, p)

]

= ln

(
p

1− p

)

, (32)

where the first inequality holds because ϕ (s, ē, p) < ϕ(s, e, p) and εh > εl, and where the

second inequality holds because ϕ (s1, e, p) ≥ ϕ (s0, e, p) and δ
h ≤ δl.

�

Proof of Proposition 6.2.

Using analogous notation as for the REE price function, we define P j
F I (δ) := PFI (δ, ε

j).

By (10) in the proof of Proposition 3.2, the functions P j
F I are strictly increasing and thus have

well-defined inverse functions δjF I (p) =
(
P j
F I

)−1
(p).

We now establish that for all p ∈ (0, 1),

δh (p) > δhFI (p) > δlF I (p) > δl (p) .

Since both P̃ and P̃FI are strictly increasing and continuous in δ, this proves part 3.
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In the full information case, we can follow the same algebra as in the proof of Proposition

3.2. above to arrive at equation (28). If all beliefs are equal at δ̂ (θ, p) = δj (p), that equation

simplifies to

p

1− p
=

ψ
(
δjF I(p), p

)

1− ψ
(
δjF I(p), p

)
ᾱ (εj) + σΩ0 (ε

j)

ᾱ (εj) + σΩ1 (εj)
for j = h, l. (33)

To establish δh (p) > δhFI (p), start again with the case σ > 0. Since all the ψ̄τ (ε
j) are averages

of the ψ
(

δ̂ (θ, p) , p
)

, and moreover the δ̂ (θ, p) are averages of δh and δl, we have ψ̄τ

(
εh
)
<

maxθ ψ
(

δ̂ (θ, p) , p
)

< ψ
(
δh, p

)
for τ = 1, 2. Therefore

p

1− p
<

ψ
(
δh, p

)

1− ψ (δh, p)

ᾱ
(
εh
)
+ σΩ0

(
εh
)

ᾱ (εh) + σΩ1 (εh)
. (34)

The definition of δhFI in (33) together with the fact that ψ is strictly increasing thus implies

δ̂h < δh. The argument for δ̂l > δl follows analogously from the fact that δ̄τ
(
δ, εl
)
> δl for

τ = 1, 2.

Now if σ < 0, the ψs are decreasing in δ, so that

ψ̄τ

(
εh
)
> min

θ
ψ
(

δ̂ (θ, p) , p
)

> ψ
(
δh, p

)

and the inequality (34) is reversed. However, The definition of δhFI in (33) together with the

fact that ψ is strictly decreasing once more implies δ̂h < δh. Again, the argument for δ̂l > δl

follows analogously from the fact that δ̄τ
(
δ, εl
)
> δl for τ = 1, 2.

case σ = 0:

We restrict attention to the case in which α > 0 for all θ (agents are risk averse). In the full

information case, if all beliefs are equal at δ̂ (θ, p) = δj (p), the equilibrium simplifies to

ln

(
p

1− p

)

= ln

(

δjF I(p)

1− δjF I(p)

)

−
Ω1(ε

j)− Ω0(ε
j)

ᾱ(εj)
for j = h, l. (35)

Since all the δ̂ (θ, p) are averages of δh and δl, we have δ̂ (θ, p) < δh for all θ. The equilibrium

condition (31) thus implies

ln

(
p

1− p

)

=
∑

θ

µh (θ; p)
α (θ)

ᾱ (εh)
ln

(

δ̂ (θ, p)

1− δ̂ (θ, p)

)

−
Ω1(ε

h)− Ω0(ε
h)

ᾱ(εh)

< ln

(
δh(p)

1− δh(p)

)

−
Ω1(ε

h)− Ω0(ε
h)

ᾱ(εh)
for all p ∈ (0, 1)
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The definition of δhFI in (35) thus implies δ̂hFI(p) < δh(p) for all p ∈ (0, 1). The argument

for δ̂lF I(p) > δl(p) follows analogously from the fact that δ̂ (θ, p) > δl for all θ.

�

A.3 More General Preferences

This subsection provides an example that is minimal in terms of the shock structure—there

are only two aggregate states, so δ and ε are perfectly correlated—but makes no assumptions

on preferences utility beyond expected utility. We show conditions for the existence of an

equilibrium with asymmetric information and that the main property underlying our results—

investors with more exposure to a risk factor are more optimistic about the risk factor in the

presence of private information—is present also in this setting.

Nature draws the distribution of types µh = (δh, εh) with probability η and the distribution

of types µl = (δl, εl) with probability 1 − η. We further assume that private signals s(θ) are

fully uninformative about dividends, i.e., the distribution of s(θ) does not depend on δ. For

practical purposes, this means that there are two types of agents: Θ =
{
θ̄, θ
}
, with type θ̄

having higher initial exposure than type θ.18

Since exposure is iid across agents, an individual agent’s initial exposure is a signal about

µ. Pooling all agents’ information about their own exposure reveals the distribution µ, or,

equivalently, the aggregate shock (δ, ε). To summarize, an economy is described by

E =
(
η, δh, δl, εh, εl, ω

(
θ̄
)
, ω (θ) , u

(
.; θ̄
)
, u (.; θ)

)
.

Since the number of aggregates states (µ, τ) that can occur is finite, prices in a rational-

expectations equilibrium are fully revealing for a generic economy E. To illustrate the effect of

uncertain exposure on trading, we thus construct nongeneric economies that have nonrevealing

equilibria. The economic mechanisms that emerge are also relevant in economies where ∆(Θ) is

uncountable and fully revealing equilibria do not exist. What is special about the present case

is that, in a nonrevealing equilibrium, the price is constant across distributions µj and carries

18In this setup, the information set of an individual consists of his type (the price is not informative) and
individual exposure is thus determined by

e (c;u(.; θ); θ) =
1

1− δ̂(θ) + 1
u′(c0;θ)

u′(c1;θ)
−1

.
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no information at all. Individual beliefs are thus independent of µj and depend only on agents’

individual types; we write δ̂(θ) for the probability that type θ assigns to the event τ = τ1.

Individual consumption is also independent of µ; we write cτ (θ), suppressing the dependence

on µ.

Proposition 6.3 constructs economies that have nonrevealing equilibria and characterizes

their properties.

Proposition 6.3.

1. An economy E can have at most one nonrevealing rational-expectations equilibrium. In

such an equilibrium,

(a) c (θ) = ω (θ) for all θ (there is no trade)

(b) δ̂
(
θ̄
)
> δ̂ (θ) (agents with higher exposure to the risk factor τ are more optimistic

about τ : they find it more likely that τ takes on the high value τ = 1)

(c) δh > δl (the aggregate news about the risk factor τ is better when there are more

agents with higher exposure to the risk factor τ)

2. The following conditions are equivalent:

(a) there exist δh, δl ∈ (0, 1) such that the economy

E =
(
η, δh, δl, εh, εl, ω

(
θ̄
)
, ω (θ) , u

(
.; θ̄
)
, u (.; θ)

)

has a nonrevealing rational-expectations equilibrium.

(b) the endowments, felicities and distribution parameters ε satisfy

ẽ
(
θ̄
)
− ẽ (θ) ≤ log

(
εh

1− εh
1− εl

εl

)

.19 (36)

Proof of Part 1.

The proof of part 1 is straightforward. In a nonrevealing equilibrium, an agent of type θ

must have the same beliefs in the two aggregate states h and l. His net demand c (θ) − ω
(
θ̄
)

19The term ẽ(θ) is defined as

ẽ (θ) := log

(
u′(ω0)

u′(ω1)

)

= log

(
1 + πe (ω (θ) , u (.; θ) ,∅)

1− (1− π) e (ω (θ) , u (.; θ) ,∅)

)

.
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must therefore be the same in both aggregate states. Market clearing requires that, for j = h, l

and τ = 1, 2,

εj
(
cτ
(
θ̄
)
− ωτ

(
θ̄
))

+
(
1− εj

)
(cτ (θ)− ωτ (θ)) = 0.

For fixed τ , this equation can only hold for both j = h and j = l if the net demands cτ (θ)−ωτ (θ)

are zero for both types, which shows part 1.a.

Under our assumptions on felicities, agents’ first-order conditions must hold in equilibrium.

If agents consume their endowments, this means

p

1− p
=

δ̂ (θ)

1− δ̂ (θ)

u′ (ω1 (θ) , θ)

u′ (ω0 (θ) , θ)
=

δ̂ (θ)

1− δ̂ (θ)
exp (−ẽ (θ)) . (37)

In an autarkic equilibrium, the type with higher initial exposure to the factor τ must be

more optimistic that τ takes on the high value τ1, than the type with lower exposure, that

is δ̂
(
θ̄
)
> δ̂ (θ) (part 1.b). Otherwise, agents with high and low initial exposure cannot both

rationalize the observed price.

The existence of an equilibrium requires further that the beliefs in equation (37) can be

derived by Bayesian updating from agents’ individual types, which serve as noisy signals of

the type distribution. In particular, an agent’s subjective probability that τ = 1 must be his

conditional expectation of the aggregate news δ, conditional on his type:

δ̂
(
θ̄
)
= η

εh

ε̄
δh + (1− η)

εl

ε̄
δl,

δ̂ (θ) = η
1− εh

1− ε̄
δh + (1− η)

1− εl

1− ε̄
δl, (38)

where we have defined ε̄ := ηεh + (1− η) εl, the unconditional probability of type θ̄. Since

εh > εl and δ̂
(
θ̄
)
> δ̂ (θ), we must have δh > δl (part 1.c). Moreover, given a pair of δjs in

(0, 1) and hence an economy, the formulas (38) deliver a unique pair of posteriors, and (37) the

unique nonrevealing equilibrium price.

Intuitively, existence of a nonrevealing equilibrium requires that the probability δ is higher

when more agents have high exposure to the factor τ . High exposure agents then interpret

their type as a signal that τ = 1. Since they are more optimistic about τ , they are happy to

consume their endowment at the price p, even though they have higher exposure than other

agents (so that gains from trade would exist with symmetric information).

Proof of Part 2.
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The proof of part 2 starts from the fact that for given δ̂ (θ)s, (38) can be viewed as a pair

of linear equations in
(
δh, δl

)
with a unique solution. The existence problem then amounts to

finding a price such that, if the posteriors satisfy (37), then the solutions
(
δh, δl

)
to (38) are

indeed between zero and one. Such a price exists if and only if condition (36) is satisfied. The

condition requires that requires that there should not be “too much” heterogeneity in individual

exposure, relative to the differences in type distributions across states.

We first need to establish the existence of
(
δh, δl

)
and a price p such that a price function

that is constant at p together with the autarkic allocation constitute an equilibrium in the

economy parameterized by the δs.

Given our assumptions on utility, it is optimal for agents to consume their endowment at

the price p and for belief δ̂ (θ) if and only if the first order conditions

δ̂ (θ)

1− δ̂ (θ)
exp (−e1 (θ)) =

p

1− p
.

hold for every θ. In other words, equilibrium posteriors must be

δ̂ (θ) =

(

1 +
1− p

p
exp (−e1 (θ))

)−1

. (39)

We are done if we can show that there exist
(
δh, δl

)
and p such that the posteriors δ̂ (θ)

not only satisfy (39), but are also derived from agents’ individual types by Bayes’ Rule. If

this is true, then the δ̂ (θ) are also posteriors given a constant, and hence uninformative, price

function. (39) thus says that the autarkic allocation is optimal in every state given the price p.

Finally, markets clear in all states if each consumer chooses his endowment.

Consider agents’ updating given their individual type. Bayes’ Rule says

δ̂
(
θ̄
)
=
ηεhδh + (1− η) εlδl

ηεh + (1− η) εl
= η

εh

ε̄
δh + (1− η)

εl

ε̄
δl,

δ̂ (θ) =
η
(
1− εh

)
δh + (1− η)

(
1− εl

)
δl

η (1− εh) + (1− η) (1− εl)
= η

1− εh

1− ε̄
δh + (1− η)

1− εl

1− ε̄
δl,

where we have defined ε̄ = ηεh + (1− η) εl.

For fixed p, this can be viewed as a linear equation in
(
δh, δl

)
with unique solution

δh =

(
1− εl

)
ε̄δ̂
(
θ̄
)
− εl (1− ε̄) δ̂ (θ)

η (εh − εl)
,

δl =
εh (1− ε̄) δ̂ (θ)−

(
1− εh

)
ε̄δ̂
(
θ̄
)

(1− η) (εh − εl)
. (40)
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We must ensure that δh and δl are between zero and one. The inequalities δh > 0 and δl > 0

are equivalent to the two inequalities in

εl

1− εl
<

ε̄

1− ε̄

δ̂
(
θ̄
)

δ̂ (θ)
<

εh

1− εh
, (41)

respectively. Moreover, the inequalities δh < 1 and δl < 1 are equivalent to the inequalities in

εl

1− εl
<

ε̄

1− ε̄

1− δ̂
(
θ̄
)

1− δ̂ (θ)
<

εh

1− εh
, (42)

respectively.

To simplify notation, we write ρ̄ = exp
(
e1
(
θ̄
))

and ρ=exp (e1 (θ)). From agents’ first order

conditions, we know

δ̂
(
θ̄
)

δ̂ (θ)
=
p+ (1− p) /ρ

p+ (1− p) /ρ̄
=: f (p)

1− δ̂
(
θ̄
)

1− δ̂ (θ)
=

1− p+ pρ

1− p+ pρ̄
=: g (p)

We want to show that there exists a price p ∈ (0, 1) such that

f (p) , g (p) ∈

[
εl

1− εl
1− ε̄

ε̄
,

εh

1− εh
1− ε̄

ε̄

]

=:
[
b, b̄
]

If such a price exists, then the δs in (40) are between zero and one, and therefore p is a

nonrevealing equilibrium price for the economy parameterized by those δs. By construction,

we have b̄ > 1 > b. This already shows that there exists an equilibrium price if the differences

in exposure are not “too large”: if ρ̄ = ρ, then f (p) = g (p) = 1 for any price. By continuity,

an equilibrium also exists for “small enough” heterogeneity. We now establish that condition

(36) provides tight bounds for this heterogeneity.

Using the fact that ρ̄ > 1 and ρ̄ > ρ, it can be verified that the function f is continuous and

strictly decreasing for all p > pf , where

pf = −
ρ̄

ρ̄− 1

Furthermore f (0) = ρ̄/ρ > 1 and f (1) = 1 and f tends to +∞ as p tends to pf from above.

It follows that f (p) ≥ b for all p ∈ (0, 1). and that there exists a unique price pu > pf such

that f (pu) ≤ b̄ for all p ≥ pu.

It can also be verified that the function g is continuous and strictly decreasing for all p > pg,

where

pg = −
1

ρ̄− 1
> pf .
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Furthermore g (0) = 1 and g (1) = ρ/ρ̄ < 1 and g tends to +∞ as p tends to pg from above.

It follows that g (p) ≤ b̄ for all p ∈ (0, 1). We also know that f (p) > g (p) for all p ∈ (0, 1).

It follows that there exists a price in p ∈ (0, 1) such that f (p) , g (p) ∈
[
b, b̄
]
if and only

if g (pu) ≥ b. Indeed, suppose that g (pu) ≥ b. Since f (1) = 1, we know that pu < 1.

If pu ∈ (0, 1), then f (pu) , g (pu) ∈
[
b, b̄
]
. If pu < 0, then f (0) < b̄. But we also have

f (0) > g (0) = 1 > b. Using continuity of f and g, we can therefore pick a small positive price

p such that f (p) , g (p) ∈
[
b, b̄
]
. To show the converse, suppose that g (pu) < b. Since g (0) = 1,

it must be that pu > 0. Since g is decreasing, we have g (p) < b for all p ∈ [pu, 1). But at the

same time, f (p) > b̄ for all p ∈ (0, pu). As a result there exists no price in the unit interval

such that f (p) , g (p) ∈
[
b, b̄
]
.

We now show that the condition g (pu) ≥ b is equivalent to condition (36). We first solve

for pu from the equation f (pu) = b̄ to find

pu

1− pu
=
ρ−1 − b̄ρ̄−1

b̄− 1

The condition g (pu) ≥ b is
1−pu

pu
+ ρ

1−pu

pu
+ ρ̄

≥ b.

Substituting in for pu

1−pu
and multiplying the numerator and denominator by ρ−1 − b̄ρ̄−1, we

obtain equivalently (
b̄− 1

)
+ ρ

(
ρ−1 − b̄ρ̄−1

)

(
b̄− 1

)
+ ρ̄

(
ρ−1 − b̄ρ̄−1

) ≥ b,

which simplifies to
b̄
(
1− ρ/ρ̄

)

ρ̄/ρ− 1
≥ b.

and further to

ρ̄/ρ ≤ b̄/b

Using the definitions of ρ̄, ρ, b̄ and b we arrive at the condition (36).�

A.4 Proof of Proposition 6.4

Proof. The agent solves

max
c∈C

−E[exp (−ρc) |I (θ)]

s.t. P (c) = P (ω) .
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Using the fact that a consumption plan can be represented as c = ac + bcτ , and using the

properties of normal distributions, the agent’s problem simplifies to a linear quadratic problem

in the coefficients:

max
ac,bc

{ρac + ρbcE [τ |I (θ)]−
1

2
ρ2b2cvar (τ |θ)}

s.t. ac + bcp = aω (θ) + bω (θ) p

The coefficients of the optimal consumption bundle are then

bc (θ) =
E [τ |I (θ)]− p

ρvar (τ |I (θ))

ac (θ) = aω (θ) + bω (θ) p− p
E [τ |I (θ)]− p

ρvar (τ |I (θ))

The agent will load more on the factor if the expected excess return on the factor is higher,

and when risk and risk aversion is lower. The endowment does not matter for the loading on

the factor, or the agent’s choice of risky assets. However, riskless claims are chosen so as to

satisfy the budget constraint.

Equilibrium

Market clearing requires
∫
c (θ) dθ =

∫
ω (θ) dθ, or, in terms of coefficients,

∫

ac (θ) dθ =

∫

aω (θ) dθ
∫

bc (θ) dθ =

∫

bω (θ) dθ

The first equation can be thought of as market clearing for riskless claims, and the second

equation as market clearing for claims with payoff τ . Walras’ law holds for these two assets: if

one equation holds, and the budget constraints, too, then the other market clears as well.

1. We prove the first claim by conjecturing on a linear price function

P̃ (δ, ε) = p̄+ βδ + γε.

The projection theorem implies that the posterior mean E [δ | I(θ)] of type θ can be written as

E [δ|I (θ)] =
1

π∗
δ

(

πus (θ)−
β

γ
πvbω(θ) +

β

γ2
(πv + πε)p

)

, (43)

where π∗
δ denotes the inverse of investor θ’s posterior variance about the aggregate news δ,

i.e.,
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(π∗
δ )

−1 := var(δ|I (θ)) =

(

πδ + πu +

(
β

γ

)2

(πv + πε)

)−1

. (44)

Since there is no information about w, E [τ | I (θ)] = E [δ | I (θ)] and V [τ | I (θ)] = π∗
δ
−1 +

π−1
w . After substituting the posterior moments for τ into individual demand equations, the

market clearing condition implies that the equilibrium price must satisfy the following expres-

sion.

p =
π∗
δ − πδ
π∗
δ

δ +

[
β

γ

πε
π∗
δ

− ρ(π∗
δ
−1 + πw

−1)

]

ε for all δ, ǫ.

There exists a linear price function as long as the coefficients β and γ satisfy the non-linear

equations

β =
π∗
δ − πδ
π∗
δ

(45)

γ =
β

γ

πε
π∗
δ

− ρ(π∗
δ
−1 + πw

−1) (46)

Dividing equation (45) by (46) we obtain

β/γ =
(β/γ)2(πv + πε) + πu

(β/γ)πε − (β/γ)2ρπ−1
w (πv + πε))− ρ(1 + π−1

w (πu + πδ))

It follows that the equilibrium values of β/γ are determined by the roots of the cubic

polynomial

g(x) = x3ρπ−1
w (πv + πε) + x2πv + xρ(1 + π−1

w (πu + πδ)) + πu. (47)

We have lim
x→−∞

g(x) = −∞, g(0) = πu > 0 and g(x) > 0 for all x > 0. By continuity of g,

there is always at least one x̃ < 0 with g (x̃) = 0. Moreover, all roots of g satisfy x̃ < 0. This

proves part 1.

2. A zero of g corresponds to an equilibrium with

β =
x̃2(πv + πε) + πu

x̃2(πv + πε) + πu + πδ
∈ (0, 1)

γ =
x̃πε − ρ

x̃2(πv + πε) + πu + πδ
− ρ/πw < 0

3. It is easy to verify that in the pooled information case

P̃ P (δ, ε) = βP δ + γPε = δ − ρ/πwε,
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which implies

β < βP = 1, and

γ < γP = −ρ/πw,

Moreover, we have β/γ > βP/γP .

4. It follows from β/γ < 0.
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