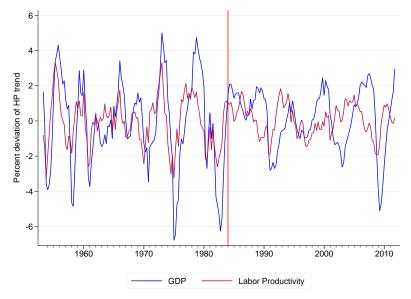
What Inventory Behavior Tells Us About How Business Cycles Have Changed

Thomas Lubik Pierre-Daniel Sarte Felipe Schwartzman

Federal Reserve Bank of Richmond¹


04/02/2014

¹The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of Richmond or the Federal Reserve System.

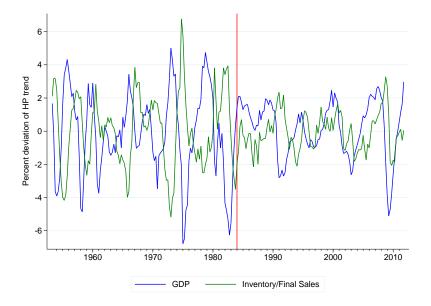
The Changing Nature of the Business Cycle

- The cyclical behavior of labor productivity has changed between the pre- and post-Great Moderation period.
- This presents a challenge for real business cycle models driven by temporary productivity shocks.
 - McGrattan and Prescott (2012) call this the "Labor Productivity Puzzle".
- It also affects our understanding and interpretation of the Great Moderation

The Changing Nature of the Business Cycle: Labor Productivity

The Changing Nature of the Business Cycle: Labor Productivity

Table 1. Changes in Business Cycle Properties in thePost-War Era (HP-Filtered Series)


	'53-'84	'84-'08	<u>'08-'12</u>
	a. Stal	ndard Dev	viations
Output	2.61	1.43	2.57
Hours Relative to Output	0.77	1.12	1.04
	b. Cr	oss Correl	ations
Output per Hour and Output	0.65	0.06	0.06
Output per Hour and Hours	0.13	-0.47	-0.33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Changing Nature of the Business Cycle: Inventories

- At the same time, the cyclical behavior of inventories also changed.
- This presents a challenge for many inventory models:
 - Wen (2005) provides a taxonomy of various puzzles.
- ▶ It also affects how we interpret the Great Moderation period.

The Changing Nature of the Business Cycle: Inventories

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

The Changing Nature of the Business Cycle: Inventories

Table 2. Changes in Business Cycle Properties in thePost-War Era (HP-Filtered Series) Inventory Facts

	<u>'53-'84</u>	<u>'84-'08</u>	<u>'08-'12</u>
	a. Stai	ndard Dev	viations
Inventories to Output	0.75	1.13	1.22
	b. Cr	oss Correl	ations
Inventories and Output	0.37	0.74	0.76
Inventory-Sales Ratio and Output	-0.57	-0.03	0.18

Our Approach

 Interpret changes in hours, output and inventories data in a unified framework.

- Modeling Framework:
 - Multi-stage, multi-sector Real Business Cycle Model.
 - Nests storage technology and time to build.
 - Stages of production have implications for inventories
- Methodology:
 - Look for "wedges" in a prototype frictionless economy that allow it to account for data. (Chari et al. 2007)
 - Sufficient detail in technology needed for "wedges" to correspond to frictions. (Christiano and Davis 2006)
 - External validation.

Wedges

- Efficiency Wedges:
 - Technological progress, changes in taxes and regulations that distort the composition of intermediate inputs or the allocation of resources across sectors and firms.
- Labor Wedge (MPL MRS of C and L):
 - Distorts consumption/leisure choice.
 - Stands in for labor market frictions.
 - Sticky prices/wages, labor taxes etc.
- Investment Wedge (MPK MRS of C_t and C_{t+1}):
 - Distorts inter-temporal choice.
 - Stands in for most credit frictions.
- Chari et al. (2007): Given simple one sector model, productivity and Labor Wedges are important, investment wedge not so much.

Key Findings

- Inventories help us distinguish between total investment wedge and return to *fixed* investment.
- Fluctuations in TFP ("efficiency wedges") explain most of business cycles pre 84, less so afterwards.
- Contribution of investment wedge increases after 84.
- Behavior of investment wedge mirrors that of alternative indicators of credit conditions.

Some Recent Literature: Labor Productivity

- McGrattan and Prescott (2012): Mismeasurement of productivity.
- Cole and Ohanian (2001,2011): Increased labor market distortions.
- Gali and van Rens (2008), Berger (2012): Reduced labor market distortions.

Francis and Ramey (2002): Labor saving shocks.

Some Recent Literature: Inventories

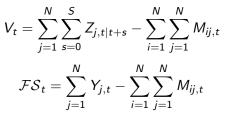
- Bils and Kahn (2000): Inventories can tell us about business cycles.
- Khan and Thomas (2007): TFP shocks in GE models induce countercyclical inventory/sales-ratio.
- Iacoviello, Schiantarelli and Schuh (2012): General equilibrium model with input and output inventories.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our Model: The Production Function

Sales in Sector j, time t are:

$$Y_{j,t} = \left(B_j \sum_{s=0}^{S} \omega_j(s)^{\frac{1}{\rho}} Z_{j,t-s|t}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}, \ \rho > 0$$


where

$$Z_{j,t-s|t} = \mathcal{K}_{j,t-s|t}^{\alpha_j} \left(\prod_{i=1}^N \mathcal{M}_{ij,t-s|t}^{\gamma_{ij}}\right) (A_{j,t-s}L_{j,t-s|t})^{1-\alpha_j-\sum_{i=1}^N \gamma_{ij}}.$$

- Kydland and Prescott (1982): $\gamma_{ij} = 0$, ho o 0, $\omega(v) = 1$
- Long and Plosser (1983) $\alpha_j = 0$, V=1, $\omega(0) = 0$
- Linear Storage: $ho o \infty$, $\omega(r)^{rac{1}{
 ho}} o (1-\delta)^r$
- Large ρ: Approaches linear storage, but with target inventory/sales ratio.

From Stages of Production to Inventories

• Inventory Investment is $\Delta N_t = V_t - \mathcal{FS}_t$, where

Cost of goods sold:

$$\sum_{j=1}^{N} Y_{j,t} \approx \sum_{j=1}^{N} \sum_{s=0}^{S} Z_{j,t-s|t}$$

Hence,

$$\Delta N_t \approx \sum_{j=1}^N \sum_{s=0}^S Z_{j,t|t+s} - \sum_{j=1}^N \sum_{s=0}^S Z_{j,t-s|t}$$

Intertemporal Utility Function and Resource Constraints

$$\max E_t \sum_{t=0}^{\infty} \left(\beta^t \prod_{\nu=0}^{t-1} \zeta_{\nu} \right) \left[\kappa \sum_{j=1}^N \eta_j \ln C_{j,t} + (1-\kappa) \ln(1-\Upsilon_t L_t) \right],$$

$$C_{j,t} + \sum_{i=1}^{N} I_{ji,t} + \sum_{i=1}^{N} M_{ji,t} = Y_{j,t}$$

$$\mathcal{K}_{j,t+1} = \Xi_j \prod_{i=1}^N I_{ij,t}^{\theta_{ij}} + (1-\delta)\mathcal{K}_{j,t},$$

$$\sum_{s=0}^{S} K_{j,t|t+s} = K_{j,t}, \quad \sum_{j=1}^{N} \sum_{s=0}^{S} L_{j,t|t+s} = L_t,$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Shock Processes

► *A_{j,t}* is sector-specific Hicks-Neutral Productivity Shocks.

$$A_{j,t} = u_t A_t a_{j,t},$$

where:

$$\frac{A_t}{A_{t-1}} = g_t$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a stationary process

- A_t is a stochastic trend
- ► *a_{j,t}* is a sector-specific temporary shock
- u_t is an aggregate temporary shock.
- Labor disutility shock Υ_t .
- Discount rate shock ζ_t .

Efficienty Wedges: A Closer Look

 In a multi-sector model, efficiency wedges are defined separately for each sector. In log-linearized form, they are,

$$\tau_{j,t}^{\mathcal{A}} = \widehat{Z}_{j,t} - \alpha_j \widehat{K}_{j,t} - \xi_j \widehat{L}_{j,t} - \sum_j \gamma_{ij} \widehat{M}_{ij,t}.$$

 In our environment these wedges are a function of time-varying productivity parameters,

$$\tau_{j,t}^{\mathcal{A}} = \xi_j \left(\widehat{u}_t + \widehat{\mathcal{A}}_t + \widehat{a}_{j,t} \right),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Labor Wedge: A Closer Look

The labor wedge in the prototypical one-sector growth model can be expressed as:

$$\widetilde{\tau}_{t}^{L} = \underbrace{\left(\widehat{Z}_{t} - \widehat{L}_{t}\right)}_{\text{Labor Productivity}} - \left(\widehat{C}_{t} + \frac{L}{1 - L}\widehat{L}_{t}\right),$$

In our framework it is

$$\tau_t^L = \sum_{j=1}^N \underbrace{\eta_j \left(\widehat{Z}_{j,t} - \widehat{L}_{j,t}\right)}_{\text{Sectoral Labor Productivity}} - \left(\widehat{C}_t + \frac{L}{1 - L}\widehat{L}_t\right) + \sum_{j=1}^N \eta_j \widehat{\phi}_{j,t},$$

where $\hat{\phi}_{j,t}$ is the cost of transforming current output $Z_{j,t}$ into current sales $Y_{j,t}$.

The Investment Wedge: A Closer Look

In one-sector model with no lags in production:

$$\widetilde{\tau}_t^X = E_t \underbrace{\left[\left(1 - \widetilde{\beta} \right) \left(\widehat{Z}_{t+1} - \widehat{K}_{t+1} \right) \right]}_{- E_t} - E_t \left(\Delta \widehat{C}_{t+1} \right),$$

Marginal Return to Investment

With multiple sectors and stages:

$$\begin{aligned} \tau_t^{X} &= E_t \left[\left(1 - \widetilde{\beta} \right) \sum_{j=1}^N \eta_j \left(\widehat{Z}_{j,t+1} - \widehat{K}_{j,t+1} + \widehat{\phi}_{j,t+1} \right) \right] \\ &+ E_t \left[\left(\sum_{i=1}^N \theta_{ji} \eta_i - \eta_j \right) \left(\widetilde{\beta} \widehat{\lambda}_{j,t+1} - \widehat{\lambda}_{j,t} \right) \right] - E_t \left(\Delta \widehat{C}_{t+1} \right), \end{aligned}$$

・ロト・日本・モート モー うへぐ

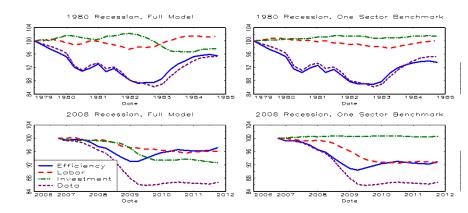
where $\widehat{\lambda}_{j,t+1}$ is the price of good j at time t+1.

Investment Wedge (cont.)

 Multiple stages of production link investment wedge to inventory investment:

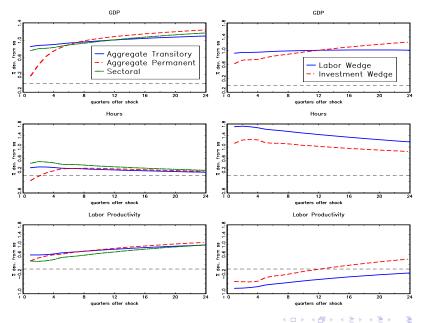
$$E_{t}\left(\sum_{s=0}^{S}\psi_{j}(s)\left[\sum_{u=0}^{s-1}\tau_{t+u}^{X}\right]\right) = -\widehat{\phi}_{j,t} - \frac{1}{\rho}\left(\frac{\Delta N_{j,t}}{Y_{j,t}}\right) \\ + E_{t}\left(\psi_{j}(s)\sum_{s=0}^{S}\left[\frac{1}{\rho}\Delta\widehat{Y}_{j,t+s} + \Delta\widehat{\lambda}_{j,t+s}\right]\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

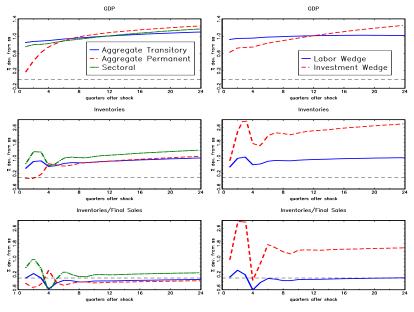

Calibration / Estimation

- Two sectors: Durables and Non-Durables, weights from I-O matrix.
- Stages of production to match average inventory/sales for each sector.

•
$$\omega_j(s) = \phi_j^s$$


- Truncation at 3 lags
- ▶ AR(1) shocks to wedges, correlated with one another.
- Bayesian estimation:
 - Data: Output, Consumption, Hours and Inventories,
 - Elasticity of substitution between stages $\rho = 18.9$ (maximum posterior).

Decomposition of Output in 1980 and 2008 Recessions


◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Impulse Response Functions

Sac

Impulse Response Functions, cont.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Moments - Correlations

Table 3. Cumulative Contribution of Wedges to BusinessCycle Correlations

	E (C) :			D		
	Efficiency	+ Labor	+ Investment	<u>Data</u>		
	a. Output per Hour and Output					
Pre-1984	0.90	0.54	0.66	0.65		
Post-1984	0.87	0.64	0.13	0.13		
	b. (Dutput per	Hour and Hours			
Pre-1984	0.55	0.23	0.18	0.14		
Post-1984	0.16	0.13	-0.38	-0.38		
c. Inventory/Sales and Output						
Pre-1984	-0.26	-0.27	-0.63	-0.58		
Post-1984	-0.45	-0.49	0.07	0.01		

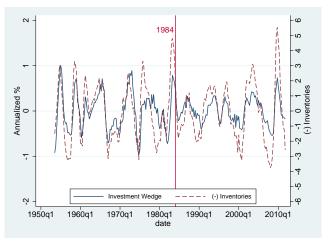

Moments - Volatilities

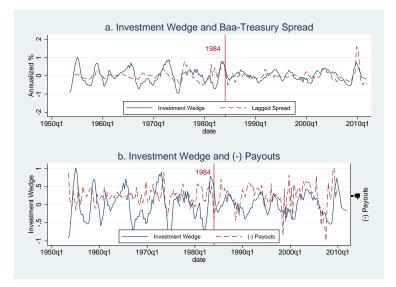
Table 4. Cumulative Contribution of Wedges to BusinessCycle Volatilities

	Efficiency	+ Labor	+ Investment	Data	
	a. Output				
Pre-1984	2.46	3.25	2.53	2.61	
Post-1984	1.34	1.60	1.67	1.67	
	b. Hours / Output				
D 1004	0 51	0.07	0.70	0 77	
Pre-1984	0.51	0.87	0.76	0.77	
Post-1984	0.51	0.78	1.07	1.07	
		c. Inventori	es / Output		
Pre-1984	0.96	0.91	0.71	0.74	
Post-1984	0.86	0.79	1.15	1.15	

Deconstructing the Results

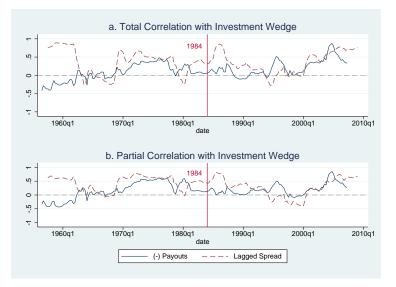
Figure: Time Series for the Investment Wedge as Compared with Inventories

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・


Deconstructing the Results (cont.)

	Labor Wedge		Investment Wedge	
	pre 1984	post 1984	pre 1984	post 1984
	a. B	enchmark G	eneralized V	Vedge
Std(Wedge)/Std(GDP)	0.85	0.86	0.16	0.16
Corr. with GDP	-0.75	-0.66	0.27	-0.49
		b. M	inus ϕ	
Std(Wedge)/Std(GDP)	0.72	1.24	0.16	0.16
Corr. with GDP	-0.75	-0.65	0.28	-0.49
	c. Aggregate Productivity			
Std(Wedge)/Std(GDP)	0.72	1.24	0.28	0.25
Corr. with GDP	-0.42	-0.66	0.38	-0.37
		d. Fixed Re	lative Price	s
Std(Wedge)/Std(GDP)	0.72	1.24	0.06	0.04
Corr. with GDP	-0.42	-0.66	-0.34	-0.40
	e. Re-estimated: One sector Growth Model			
Std(Wedge)/Std(GDP)	0.72	1.25	0.03	0.02
Corr. with GDP	-0.42	-0.66	0.40	0.65

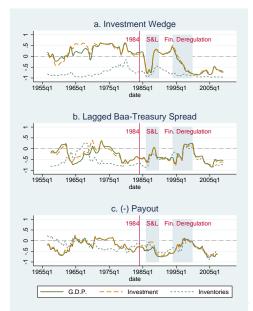
Other Measures of Credit Frictions


Table 5. Correlations of Credit Conditions and Macroe conomic Aggregates in the Post-War Era (HP-Filtered Series)

	1953-1983	1984-2008	2008-2012
	a. Lagged I	Bond Spread	(Baa - 10 year Treas)
Output	-0.28	-0.48	-0.51
Fixed Investment	-0.29	-0.51	-0.60
Inventories	-0.61	-0.50	-0.79
	b. Payo	uts to Busine	ss Owners (Total)
Output	0.13	0.55	0.79
Fixed Investment	0.13	0.53	0.81
Inventories	0.21	0.55	0.82

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト 一 画 … の Q ()

6 years rolling correlation



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

	<u>1953-1983</u>	1984-2007	2008-2012
	a. T	Total Correlat	ions
Lagged Baa-Treasury Spread	0.37	0.38	0.78
Lagged Baa-Aaa Spread	0.49	0.64	0.84
Lagged Aaa-Treasury Spread	0.50	0.62	0.86
Lagged GZ Spread	-	0.53	0.79
Lagged GZ Excess Spread	-	0.44	0.74
(-) Payouts (total)	0.10	0.49	0.80
(-) Payouts (corporate)	0.20	0.48	0.56
Debt Repurchases	-0.10	0.39	0.71

	1953-1983	1984-2007	2008-2012
	b. P	artial Correla	tions
Lagged Baa-Treasury Spread	0.53	0.57	0.72
Lagged Baa-Aaa Spread	0.46	0.24	0.66
Lagged Aaa-Treasury Spread	0.48	0.59	0.73
Lagged GZ Spread	-	0.44	0.60
Lagged GZ Excess Spread	-	0.32	0.70
(-) Payouts (total)	0.14	0.36	0.58
(-) Payouts (corporate)	0.31	0.36	0.03
Debt Repurchases	0.10	0.17	0.22

6 years rolling correlation

▲臣▶ ▲臣▶ 臣 ∽��?

Conclusion

- Great Moderation is also "Great Re-synchronization", which lasts longer than the Great Moderation itself.
- Productivity driven business cycles are out of synch, need to add shocks.
- Labor market frictions play a role.
- **But** also a role for financial frictions.
- Research program: What accounts for the change in behavior of the investment wedge after 1984?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <